One practice to reduce spray drift during pesticide application is the addition of certain chemical adjuvants to spraying solutions, which change their physicochemical properties and result in larger droplets. The environmental impact of these agrochemicals continues however also after application, depending on surface processes occurring upon treated surfaces. While the impact of anti-drift adjuvants has been studied regarding spray drift, their impact on the fate of deposited pesticides has received little attention. Here, the effect of a polymer-based adjuvant (polyacrylamide) on the photolysis and evaporation rates of pyrimethanil (common fungicide) from dry films were investigated under controlled laboratory conditions and during two field studies. The laboratory results indicate that the adjuvant enhances the volatilization and photolysis rate both on hydrophobic lemon leaves and hydrophilic glass substrates. These results can be attributed to an increase in the geometrical area of residual film and a widening of its circumference rim, where solutes are likely to concentrate, when generated from adjuvant-containing droplets. Such morphological differences may enhance the exposure of deposited pesticides to interact with the overlaying atmosphere and incident radiation. The field data was less conclusive, suggesting a small impact of the anti-drift adjuvant on the fungicide’s secondary drift from crops and an even lower effect on volatilization from bare soil.

Katzman D., Zivan O., Dubowski Y. (2023). Assessing the Influence of Polymer-Based Anti-Drift Adjuvants on the Photolysis, Volatilization, and Secondary Drift of Pesticides after Application. ATMOSPHERE, 14(11), 1-13 [10.3390/atmos14111627].

Assessing the Influence of Polymer-Based Anti-Drift Adjuvants on the Photolysis, Volatilization, and Secondary Drift of Pesticides after Application

Zivan O.
Secondo
;
2023

Abstract

One practice to reduce spray drift during pesticide application is the addition of certain chemical adjuvants to spraying solutions, which change their physicochemical properties and result in larger droplets. The environmental impact of these agrochemicals continues however also after application, depending on surface processes occurring upon treated surfaces. While the impact of anti-drift adjuvants has been studied regarding spray drift, their impact on the fate of deposited pesticides has received little attention. Here, the effect of a polymer-based adjuvant (polyacrylamide) on the photolysis and evaporation rates of pyrimethanil (common fungicide) from dry films were investigated under controlled laboratory conditions and during two field studies. The laboratory results indicate that the adjuvant enhances the volatilization and photolysis rate both on hydrophobic lemon leaves and hydrophilic glass substrates. These results can be attributed to an increase in the geometrical area of residual film and a widening of its circumference rim, where solutes are likely to concentrate, when generated from adjuvant-containing droplets. Such morphological differences may enhance the exposure of deposited pesticides to interact with the overlaying atmosphere and incident radiation. The field data was less conclusive, suggesting a small impact of the anti-drift adjuvant on the fungicide’s secondary drift from crops and an even lower effect on volatilization from bare soil.
2023
Katzman D., Zivan O., Dubowski Y. (2023). Assessing the Influence of Polymer-Based Anti-Drift Adjuvants on the Photolysis, Volatilization, and Secondary Drift of Pesticides after Application. ATMOSPHERE, 14(11), 1-13 [10.3390/atmos14111627].
Katzman D.; Zivan O.; Dubowski Y.
File in questo prodotto:
File Dimensione Formato  
Assessing the Influence of Polymer-Based Anti-Drift Adjuvants on the Photolysis, Volatilization, and Secondary Drift of Pesticides after Application.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.93 MB
Formato Adobe PDF
2.93 MB Adobe PDF Visualizza/Apri
atmosphere-14-01627-s001.zip

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 576.56 kB
Formato Zip File
576.56 kB Zip File Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/984756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact