Monitoring soil water content (SWC) is vital for various applications, particularly in agriculture. This study compares SWC estimated by means of SCATSAR-SWI remote sensing (RS) at different depths (T-values) with Cosmic Ray Neutron Sensing (CRNS) across four agricultural sites in northern Italy. Additionally, it examines the spatial mismatch and representativeness of SWC products’ footprints based on different factors within the following areas: the Normalized Difference Vegetation Index (NDVI), soil properties (sand, silt, clay, Soil Organic Carbon (SOC)), and irrigation information. The results reveal that RS-derived SWC, particularly at T = 2 depth, exhibits moderate positive linear correlation (mean Pearson correlation coefficient, R = 0.6) and a mean unbiased Root–Mean–Square Difference (ubRMSD) of 14.90%SR. However, lower agreement is observed during summer and autumn, attributed to factors such as high biomass growth. Sites with less variation in vegetation and soil properties within RS pixels rank better in comparing SWC products. Although a weak correlation (mean R = 0.35) exists between median NDVI differences of footprints and disparities in SWC product performance metrics, the influence of vegetation greenness on the results is clearly identified. Additionally, RS pixels with a lower percentage of sand and SOC and silt loam soil type correlate to decreased agreement between SWC products. Finally, localized irrigation practices also partially explain some differences in the SWC products. Overall, the results highlight how RS pixel variability of the different factors can explain differences between SWC products and how this information should be considered when selecting optimal ground-based measurement locations for remote sensing comparison.

Emamalizadeh, S., Pirola, A., Alessandrini, C., Balenzano, A., Baroni, G. (2024). Comparison of soil water content from SCATSAR-SWI and cosmic ray neutron sensing at four agricultural sites in Northern Italy: Insights from spatial variability and representativeness. REMOTE SENSING, 16(18), 1-20 [10.3390/rs16183384].

Comparison of soil water content from SCATSAR-SWI and cosmic ray neutron sensing at four agricultural sites in Northern Italy: Insights from spatial variability and representativeness

Emamalizadeh, Sadra
Primo
;
Baroni, Gabriele
Ultimo
2024

Abstract

Monitoring soil water content (SWC) is vital for various applications, particularly in agriculture. This study compares SWC estimated by means of SCATSAR-SWI remote sensing (RS) at different depths (T-values) with Cosmic Ray Neutron Sensing (CRNS) across four agricultural sites in northern Italy. Additionally, it examines the spatial mismatch and representativeness of SWC products’ footprints based on different factors within the following areas: the Normalized Difference Vegetation Index (NDVI), soil properties (sand, silt, clay, Soil Organic Carbon (SOC)), and irrigation information. The results reveal that RS-derived SWC, particularly at T = 2 depth, exhibits moderate positive linear correlation (mean Pearson correlation coefficient, R = 0.6) and a mean unbiased Root–Mean–Square Difference (ubRMSD) of 14.90%SR. However, lower agreement is observed during summer and autumn, attributed to factors such as high biomass growth. Sites with less variation in vegetation and soil properties within RS pixels rank better in comparing SWC products. Although a weak correlation (mean R = 0.35) exists between median NDVI differences of footprints and disparities in SWC product performance metrics, the influence of vegetation greenness on the results is clearly identified. Additionally, RS pixels with a lower percentage of sand and SOC and silt loam soil type correlate to decreased agreement between SWC products. Finally, localized irrigation practices also partially explain some differences in the SWC products. Overall, the results highlight how RS pixel variability of the different factors can explain differences between SWC products and how this information should be considered when selecting optimal ground-based measurement locations for remote sensing comparison.
2024
Emamalizadeh, S., Pirola, A., Alessandrini, C., Balenzano, A., Baroni, G. (2024). Comparison of soil water content from SCATSAR-SWI and cosmic ray neutron sensing at four agricultural sites in Northern Italy: Insights from spatial variability and representativeness. REMOTE SENSING, 16(18), 1-20 [10.3390/rs16183384].
Emamalizadeh, Sadra; Pirola, Alessandro; Alessandrini, Cinzia; Balenzano, Anna; Baroni, Gabriele
File in questo prodotto:
File Dimensione Formato  
remotesensing-16-03384.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 5.57 MB
Formato Adobe PDF
5.57 MB Adobe PDF Visualizza/Apri
Ceregnano.xlsx

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 18.65 kB
Formato Microsoft Excel XML
18.65 kB Microsoft Excel XML Visualizza/Apri
Landriano.xlsx

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 19.72 kB
Formato Microsoft Excel XML
19.72 kB Microsoft Excel XML Visualizza/Apri
Legnaro.xlsx

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 18.37 kB
Formato Microsoft Excel XML
18.37 kB Microsoft Excel XML Visualizza/Apri
SanPietro.xlsx

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 17.92 kB
Formato Microsoft Excel XML
17.92 kB Microsoft Excel XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/984475
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact