We prove that a word hyperbolic group whose Gromov boundary properly contains a 2-sphere cannot admit a projective Anosov representation into (Formula presented.), (Formula presented.). We also prove that a word hyperbolic group that admits a projective Anosov representation into (Formula presented.) is virtually a free group or virtually a surface group, a result established independently by Dey–Greenberg–Riestenberg.

Pozzetti M.B., Tsouvalas K. (2024). On projective Anosov subgroups of symplectic groups. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 56(2), 581-588 [10.1112/blms.12951].

On projective Anosov subgroups of symplectic groups

Pozzetti M. B.;
2024

Abstract

We prove that a word hyperbolic group whose Gromov boundary properly contains a 2-sphere cannot admit a projective Anosov representation into (Formula presented.), (Formula presented.). We also prove that a word hyperbolic group that admits a projective Anosov representation into (Formula presented.) is virtually a free group or virtually a surface group, a result established independently by Dey–Greenberg–Riestenberg.
2024
Pozzetti M.B., Tsouvalas K. (2024). On projective Anosov subgroups of symplectic groups. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 56(2), 581-588 [10.1112/blms.12951].
Pozzetti M.B.; Tsouvalas K.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/984336
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact