In this paper we investigate the Hausdorff dimension of limit sets of Anosov representations. In this context we revisit and extend the framework of hyperconvex representations and establish a convergence property for them, analogue to a differentiability property. As an application of this convergence, we prove that the Hausdorff dimension of the limit set of a hyperconvex representation is equal to a suitably chosen critical exponent.

Pozzetti M.B., Sambarino A., Wienhard A. (2021). Conformality for a robust class of non-conformal attractors. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021(774), 1-51 [10.1515/crelle-2020-0029].

Conformality for a robust class of non-conformal attractors

Pozzetti M. B.;
2021

Abstract

In this paper we investigate the Hausdorff dimension of limit sets of Anosov representations. In this context we revisit and extend the framework of hyperconvex representations and establish a convergence property for them, analogue to a differentiability property. As an application of this convergence, we prove that the Hausdorff dimension of the limit set of a hyperconvex representation is equal to a suitably chosen critical exponent.
2021
Pozzetti M.B., Sambarino A., Wienhard A. (2021). Conformality for a robust class of non-conformal attractors. JOURNAL FÜR DIE REINE UND ANGEWANDTE MATHEMATIK, 2021(774), 1-51 [10.1515/crelle-2020-0029].
Pozzetti M.B.; Sambarino A.; Wienhard A.
File in questo prodotto:
File Dimensione Formato  
Crelle-PozzettiSambarinoWienhard.pdf.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 1.42 MB
Formato Adobe PDF
1.42 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/984136
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 19
social impact