This paper is an extended abstract of a recent work, in which we introduce COSINER, a novel approach to enhancing Named Entity Recognition (NER) tasks through data augmentation. Unlike traditional methods that risk introducing noise, COSINER leverages context similarity to substitute entity mentions with more contextually appropriate ones, yielding superior performance in limited-data scenarios. Experimental results demonstrate COSINER’s effectiveness over existing baselines, with computational times comparable to basic augmentation methods and superior to pre-trained model-based approaches.

Ilaria Bartolini, A.C. (2024). Named Entity Recognition using context similarity data augmentation. CEUR-WS.

Named Entity Recognition using context similarity data augmentation

Ilaria Bartolini;
2024

Abstract

This paper is an extended abstract of a recent work, in which we introduce COSINER, a novel approach to enhancing Named Entity Recognition (NER) tasks through data augmentation. Unlike traditional methods that risk introducing noise, COSINER leverages context similarity to substitute entity mentions with more contextually appropriate ones, yielding superior performance in limited-data scenarios. Experimental results demonstrate COSINER’s effectiveness over existing baselines, with computational times comparable to basic augmentation methods and superior to pre-trained model-based approaches.
2024
Proceedings of the 32nd Symposium on Advanced Database Systems
331
338
Ilaria Bartolini, A.C. (2024). Named Entity Recognition using context similarity data augmentation. CEUR-WS.
Ilaria Bartolini, Angelo Chianese, Vincenzo Moscato, Marco Postiglione, Giancarlo Sperlí, Andrea Vignali
File in questo prodotto:
File Dimensione Formato  
SEBD 2024-paper20.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.12 MB
Formato Adobe PDF
1.12 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/983503
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact