Including the effect of lattice anharmonicity on electron-phonon interactions has recently garnered attention due to its role as a necessary and significant component in explaining various phenomena, including superconductivity, optical response, and temperature dependence of mobility. This study focuses on analytically treating the effects of anharmonic electron-phonon coupling on the polaron self-energy, combined with numerical Diagrammatic Monte Carlo (DiagMC) data. Specifically, we incorporate a quadratic interaction into the method of squeezed phonon states, which has proven effective for analytically calculating the polaron parameters. Additionally, we extend this method to nonparabolic finite-width conduction bands while maintaining the periodic translation symmetry of the system. Our results are compared with those obtained from Diagrammatic Monte Carlo, partially reported in a recent study [S. Ragni, Phys. Rev. B 107, L121109 (2023)2469-995010.1103/PhysRevB.107.L121109], covering a wide range of coupling strengths for the nonlinear interaction. Remarkably, our analytic method predicts the same features as the Diagrammatic Monte Carlo simulation.
Klimin S.N., Tempere J., Houtput M., Ragni S., Hahn T., Franchini C., et al. (2024). Analytic method for quadratic polarons in nonparabolic bands. PHYSICAL REVIEW. B, 110(7), 1-13 [10.1103/PhysRevB.110.075107].
Analytic method for quadratic polarons in nonparabolic bands
Franchini C.Penultimo
Supervision
;
2024
Abstract
Including the effect of lattice anharmonicity on electron-phonon interactions has recently garnered attention due to its role as a necessary and significant component in explaining various phenomena, including superconductivity, optical response, and temperature dependence of mobility. This study focuses on analytically treating the effects of anharmonic electron-phonon coupling on the polaron self-energy, combined with numerical Diagrammatic Monte Carlo (DiagMC) data. Specifically, we incorporate a quadratic interaction into the method of squeezed phonon states, which has proven effective for analytically calculating the polaron parameters. Additionally, we extend this method to nonparabolic finite-width conduction bands while maintaining the periodic translation symmetry of the system. Our results are compared with those obtained from Diagrammatic Monte Carlo, partially reported in a recent study [S. Ragni, Phys. Rev. B 107, L121109 (2023)2469-995010.1103/PhysRevB.107.L121109], covering a wide range of coupling strengths for the nonlinear interaction. Remarkably, our analytic method predicts the same features as the Diagrammatic Monte Carlo simulation.File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.110.075107.pdf
accesso riservato
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per accesso riservato
Dimensione
719.01 kB
Formato
Adobe PDF
|
719.01 kB | Adobe PDF | Visualizza/Apri Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.