The Multiple Knapsack Assignment Problem is a strongly NP-hard combinatorial optimisation problem, with several applications. We show that an upper bound for the problem, due to Kataoka and Yamada, can be computed in linear time. We then show that some bounds due to Martello and Monaci dominate the Kataoka-Yamada bound. Finally, we define an even stronger bound, which turns out to be particularly effective when the number of knapsacks is not a multiple of the number of item classes.

Galli L., Letchford A.N. (2024). On upper bounds for the multiple knapsack assignment problem. OPERATIONS RESEARCH LETTERS, 54, 1-6 [10.1016/j.orl.2024.107104].

On upper bounds for the multiple knapsack assignment problem

Galli L.;
2024

Abstract

The Multiple Knapsack Assignment Problem is a strongly NP-hard combinatorial optimisation problem, with several applications. We show that an upper bound for the problem, due to Kataoka and Yamada, can be computed in linear time. We then show that some bounds due to Martello and Monaci dominate the Kataoka-Yamada bound. Finally, we define an even stronger bound, which turns out to be particularly effective when the number of knapsacks is not a multiple of the number of item classes.
2024
Galli L., Letchford A.N. (2024). On upper bounds for the multiple knapsack assignment problem. OPERATIONS RESEARCH LETTERS, 54, 1-6 [10.1016/j.orl.2024.107104].
Galli L.; Letchford A.N.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0167637724000403-main.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 301.6 kB
Formato Adobe PDF
301.6 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/983161
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact