In this work, we give an overview on some recent results related to quantum machine learning (QML) regarding the training of quantum generative adversarial neural networks by means of classical shadows, and a parametric model implemented on a quantum annealer. Then, we argue that QML models can be robust against targeted data corruption and gradient-based attacks, motivating the exploration of the relationship between QML and cybersecurity.

Pastorello, D. (2024). Quantum Machine Learning: Perspectives in Cybersecurity [10.1007/978-3-031-68738-9_20].

Quantum Machine Learning: Perspectives in Cybersecurity

Pastorello, Davide
2024

Abstract

In this work, we give an overview on some recent results related to quantum machine learning (QML) regarding the training of quantum generative adversarial neural networks by means of classical shadows, and a parametric model implemented on a quantum annealer. Then, we argue that QML models can be robust against targeted data corruption and gradient-based attacks, motivating the exploration of the relationship between QML and cybersecurity.
2024
Computer Safety, Reliability, and Security
266
274
Pastorello, D. (2024). Quantum Machine Learning: Perspectives in Cybersecurity [10.1007/978-3-031-68738-9_20].
Pastorello, Davide
File in questo prodotto:
File Dimensione Formato  
Quantum_cybersecurity.pdf

embargo fino al 08/09/2025

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 415.57 kB
Formato Adobe PDF
415.57 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/983160
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact