In the current international context characterized by the tendency to stricter limits for P concentration in treated wastewater and a strong drive towards phosphate recovery, it is crucial to develop cost-effective technologies to remove and recover phosphate from municipal wastewater (MWW). In this study, an initial screening of the phosphate adsorption performances of 9 sorbents including several hydrotalcites led to the selection of calcined pyroaurite - an innovative material composed of mixed Mg/Fe oxides - as the best-performing one. The assessment of calcined pyroaurite by means of isotherms and continuous-flow adsorption/desorption tests conducted with actual MWW resulted in a high P sorption capacity (12 mgP g- 1 at the typical phosphate concentration in MWW), the capacity to treat 730 BVs at the 1 mgP L- 1 breakpoint imposed by the current EU legislation, and a 93 % phosphate recovery. Calcined pyroaurite resulted in satisfactory performances also in a test conducted with a saline MWW deriving from a hotspot of seawater intrusion, a rapidly increasing phenomenon as a result of climate change. Five consecutive adsorption/desorption cycles conducted in a 20-cm column at a 5-min empty bed contact time resulted stable in terms of P adsorption/recovery performances, specific surface area and chemical structure of calcined pyroaurite. In the perspective to apply phosphate recovery with calcined pyroaurite at full scale, the process scale-up to a 60-cm packed bed - close to the column heights of industrial applications- resulted in stable performances. Calcium phosphate, widely used to produce phosphate-based fertilizers, can be obtained from the desorbed product by precipitation with Ca(OH)2. 2 . These results point to calcined pyroaurite as a very promising material for phosphate removal and recovery from MWW and from other P-rich effluents in a circular economy perspective.
Maggetti C., Pinelli D., Di Federico V., Sisti L., Tabanelli T., Cavani F., et al. (2024). Development and validation of an adsorption process for phosphate removal and recovery from municipal wastewater based on hydrotalcite-related materials. SCIENCE OF THE TOTAL ENVIRONMENT, 951, 1-11 [10.1016/j.scitotenv.2024.175509].
Development and validation of an adsorption process for phosphate removal and recovery from municipal wastewater based on hydrotalcite-related materials
Maggetti C.;Pinelli D.;Di Federico V.;Sisti L.;Tabanelli T.;Cavani F.;Frascari D.
2024
Abstract
In the current international context characterized by the tendency to stricter limits for P concentration in treated wastewater and a strong drive towards phosphate recovery, it is crucial to develop cost-effective technologies to remove and recover phosphate from municipal wastewater (MWW). In this study, an initial screening of the phosphate adsorption performances of 9 sorbents including several hydrotalcites led to the selection of calcined pyroaurite - an innovative material composed of mixed Mg/Fe oxides - as the best-performing one. The assessment of calcined pyroaurite by means of isotherms and continuous-flow adsorption/desorption tests conducted with actual MWW resulted in a high P sorption capacity (12 mgP g- 1 at the typical phosphate concentration in MWW), the capacity to treat 730 BVs at the 1 mgP L- 1 breakpoint imposed by the current EU legislation, and a 93 % phosphate recovery. Calcined pyroaurite resulted in satisfactory performances also in a test conducted with a saline MWW deriving from a hotspot of seawater intrusion, a rapidly increasing phenomenon as a result of climate change. Five consecutive adsorption/desorption cycles conducted in a 20-cm column at a 5-min empty bed contact time resulted stable in terms of P adsorption/recovery performances, specific surface area and chemical structure of calcined pyroaurite. In the perspective to apply phosphate recovery with calcined pyroaurite at full scale, the process scale-up to a 60-cm packed bed - close to the column heights of industrial applications- resulted in stable performances. Calcium phosphate, widely used to produce phosphate-based fertilizers, can be obtained from the desorbed product by precipitation with Ca(OH)2. 2 . These results point to calcined pyroaurite as a very promising material for phosphate removal and recovery from MWW and from other P-rich effluents in a circular economy perspective.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0048969724056596-main.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
3.62 MB
Formato
Adobe PDF
|
3.62 MB | Adobe PDF | Visualizza/Apri |
1-s2.0-S0048969724056596-mmc1.pdf
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
416.87 kB
Formato
Adobe PDF
|
416.87 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.