The small-maturity implied volatility of an asset pricing model is fully determined by the asymptotics of traded option prices, and thus model-free expressions are available. We show how by sharpening one such expression it is possible to derive a novel general formula for the leading order of the in-the-money and out-of-the money (ITM/OTM) implied volatility skew. We apply this formula to find expressions of the small maturity limiting skew of the Heston stochastic volatility model, of exponential L & eacute;vy models and their time changes, as well as that of some recently proposed pricing models with independent log returns.

Azzone M., Torricelli L. (2024). On the implied volatility skew outside the at-the-money point. QUANTITATIVE FINANCE, online first, 1-11 [10.1080/14697688.2024.2357727].

On the implied volatility skew outside the at-the-money point

Torricelli L.
2024

Abstract

The small-maturity implied volatility of an asset pricing model is fully determined by the asymptotics of traded option prices, and thus model-free expressions are available. We show how by sharpening one such expression it is possible to derive a novel general formula for the leading order of the in-the-money and out-of-the money (ITM/OTM) implied volatility skew. We apply this formula to find expressions of the small maturity limiting skew of the Heston stochastic volatility model, of exponential L & eacute;vy models and their time changes, as well as that of some recently proposed pricing models with independent log returns.
2024
Azzone M., Torricelli L. (2024). On the implied volatility skew outside the at-the-money point. QUANTITATIVE FINANCE, online first, 1-11 [10.1080/14697688.2024.2357727].
Azzone M.; Torricelli L.
File in questo prodotto:
File Dimensione Formato  
QF_SkewOTM.pdf

embargo fino al 09/12/2025

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 419.2 kB
Formato Adobe PDF
419.2 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/982357
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact