Spectrum scarcity is one of the main challenges of future wireless technologies. When looking at vehicle-to -everything (V2X), this is amplified as spectrum sharing could impact road safety and traffic efficiency. It is therefore of particular importance to study solutions that allow the coexistence, in the same geographical area and in the same channels, of what are today the main V2X access technologies, namely IEEE 802.11p and long term evolution (LTE)-V2X sidelink Mode 4. In this paper, in addition to studying the impact of mutual interference, which is found to have a strong impact especially on the former and under congested channel conditions, a mitigation solution is extensively studied. The solution is based on the insertion of the IEEE 802.11p preamble at the beginning of each LTE-V2X sidelink transmission. The proposal, which is also under discussion within the standardization bodies, requires no changes to the IEEE 802.11p protocol stack and minor changes to LTE-V2X sidelink. This solution is directly applicable to upcoming IEEE 802.11bd and extendable to new radio (NR)-V2X sidelink. The paper shows, through analysis and simulations in free-flow and dense scenarios, that the proposal enables mitigation of collisions caused by co-channel coexistence under low and high load conditions. The improvement is guaranteed even in cases of congestion when combined with additional countermeasures. Regarding the latter aspect, in particular, different approaches are compared, demonstrating that acting on the congestion control mechanisms is a simple but effective solution.
Bazzi, A., Bartoletti, S., Zanella, A., Martinez, V. (2024). Performance analysis of IEEE 802.11p preamble insertion in C-V2X sidelink signals for co-channel coexistence. VEHICULAR COMMUNICATIONS, 45, 1-12 [10.1016/j.vehcom.2023.100710].
Performance analysis of IEEE 802.11p preamble insertion in C-V2X sidelink signals for co-channel coexistence
Bazzi, Alessandro;
2024
Abstract
Spectrum scarcity is one of the main challenges of future wireless technologies. When looking at vehicle-to -everything (V2X), this is amplified as spectrum sharing could impact road safety and traffic efficiency. It is therefore of particular importance to study solutions that allow the coexistence, in the same geographical area and in the same channels, of what are today the main V2X access technologies, namely IEEE 802.11p and long term evolution (LTE)-V2X sidelink Mode 4. In this paper, in addition to studying the impact of mutual interference, which is found to have a strong impact especially on the former and under congested channel conditions, a mitigation solution is extensively studied. The solution is based on the insertion of the IEEE 802.11p preamble at the beginning of each LTE-V2X sidelink transmission. The proposal, which is also under discussion within the standardization bodies, requires no changes to the IEEE 802.11p protocol stack and minor changes to LTE-V2X sidelink. This solution is directly applicable to upcoming IEEE 802.11bd and extendable to new radio (NR)-V2X sidelink. The paper shows, through analysis and simulations in free-flow and dense scenarios, that the proposal enables mitigation of collisions caused by co-channel coexistence under low and high load conditions. The improvement is guaranteed even in cases of congestion when combined with additional countermeasures. Regarding the latter aspect, in particular, different approaches are compared, demonstrating that acting on the congestion control mechanisms is a simple but effective solution.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.