In recent years, the development of Friction Stir Extrusion (FSE) simulation models becomes crucial for gaining a deeper understanding of its underlying physics. Concurrently, there is a demand for precise control over the microstructure evolution of aluminum alloy extruded profiles, given its substantial impact on mechanical properties. Despite this, the relationship between process parameters and the evolution of grain structure remains insufficiently understood. In this context, a Lagrangian approach was established to simulate the FSE process, utilizing the commercial software DEFORM (TM) 3D. This research involved the investigation of the impact of various process parameters, such as rotational and descent tool speeds, on the occurrence of bonding phenomena, while considering both thermal and stress conditions. Furthermore, an innovative model originally developed for traditionally extruded components was implemented in a customized Fortran post-processing routine to investigate and predict the recrystallization behavior in the FSE of AA6061 aluminum alloy.

Bocchi S., N.M. (2024). Prediction of the microstructure evolution during the friction stir extrusion of a AA6061 aluminum alloy. Washington, DC : Association of American Publishers [10.21741/9781644903131-75].

Prediction of the microstructure evolution during the friction stir extrusion of a AA6061 aluminum alloy

Donati L.
Ultimo
Supervision
2024

Abstract

In recent years, the development of Friction Stir Extrusion (FSE) simulation models becomes crucial for gaining a deeper understanding of its underlying physics. Concurrently, there is a demand for precise control over the microstructure evolution of aluminum alloy extruded profiles, given its substantial impact on mechanical properties. Despite this, the relationship between process parameters and the evolution of grain structure remains insufficiently understood. In this context, a Lagrangian approach was established to simulate the FSE process, utilizing the commercial software DEFORM (TM) 3D. This research involved the investigation of the impact of various process parameters, such as rotational and descent tool speeds, on the occurrence of bonding phenomena, while considering both thermal and stress conditions. Furthermore, an innovative model originally developed for traditionally extruded components was implemented in a customized Fortran post-processing routine to investigate and predict the recrystallization behavior in the FSE of AA6061 aluminum alloy.
2024
27th International ESAFORM Conference on Material Forming, ESAFORM 2024
678
687
Bocchi S., N.M. (2024). Prediction of the microstructure evolution during the friction stir extrusion of a AA6061 aluminum alloy. Washington, DC : Association of American Publishers [10.21741/9781644903131-75].
Bocchi S., Negozio M., Giardini C., Donati L.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/981494
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact