Accumulative roll bonding (ARB) is a severe plastic deformation process that enables the production of materials with ultrafine microstructures and enhances the characteristics of the base material, particularly in metal matrix composites. The primary objective of this study is to experimentally investigate the bonding strength in AA3105 strips that underwent the roll bonding process, with a specific focus on examining the influence of temperature and reduction rate on bonding. Three temperature levels (200 °C, 300 °C, and 400 °C) and three thickness reduction levels (35%, 50%, and 65%) were considered. The T-peel test was carried out to assess the bonding quality. It was employed to determine the peak force required to separate the two bonded strips. Additionally, ANOVA analysis was performed to develop a regression equation for analyzing peak force. Optical microscopy was used to evaluate the interface bonding quality in the longitudinal section. The results indicate that the bonding strength increases with both temperature and percentage reduction.

Carta, M., Buonadonna, P., Reggiani, B., Donati, L., Aymerich, F., El Mehtedi, M. (2024). Effect of Temperature and Strain on Bonding of Similar AA3105 Aluminum Alloys by the Roll Bonding Process. METALS, 14(8), 1-14 [10.3390/met14080920].

Effect of Temperature and Strain on Bonding of Similar AA3105 Aluminum Alloys by the Roll Bonding Process

Donati, Lorenzo
Membro del Collaboration Group
;
2024

Abstract

Accumulative roll bonding (ARB) is a severe plastic deformation process that enables the production of materials with ultrafine microstructures and enhances the characteristics of the base material, particularly in metal matrix composites. The primary objective of this study is to experimentally investigate the bonding strength in AA3105 strips that underwent the roll bonding process, with a specific focus on examining the influence of temperature and reduction rate on bonding. Three temperature levels (200 °C, 300 °C, and 400 °C) and three thickness reduction levels (35%, 50%, and 65%) were considered. The T-peel test was carried out to assess the bonding quality. It was employed to determine the peak force required to separate the two bonded strips. Additionally, ANOVA analysis was performed to develop a regression equation for analyzing peak force. Optical microscopy was used to evaluate the interface bonding quality in the longitudinal section. The results indicate that the bonding strength increases with both temperature and percentage reduction.
2024
Carta, M., Buonadonna, P., Reggiani, B., Donati, L., Aymerich, F., El Mehtedi, M. (2024). Effect of Temperature and Strain on Bonding of Similar AA3105 Aluminum Alloys by the Roll Bonding Process. METALS, 14(8), 1-14 [10.3390/met14080920].
Carta, Mauro; Buonadonna, Pasquale; Reggiani, Barbara; Donati, Lorenzo; Aymerich, Francesco; El Mehtedi, Mohamad
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/981443
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact