The use of synthetic natural gas (SNG) as a plug-and-play fuel coming from renewables can help to overcome the limitations given by the intermittency of renewable energy. A way to implement the production of SNG pass through the co-electrolysis of CO2 to a mixture of hydrogen, carbon monoxide and carbon dioxide, steam and small amounts of methane, followed by CO and CO2 methanation. The presence of different reactants and processes requires the comprehension and quantification of the kinetics of the reactions involved with the aim of optimizing methanation. In this work a kinetic model that considers both the direct CO2 methanation and the indirect RWGS + CO methanation pathways has been developed over a Ni(10 %wt)/Ce0.33Zr0.63Pr0.04O2. The kinetic study made it possible to understand the influence of the reactants and products on the reactions through the calculation of reaction rates. This allowed to test, by linearization, the models found in the literature and their adjustment permitted to calculate sixteen kinetic parameters (activation energies, heats of adsorption and pre-exponential factors) present in the rate laws of methanation of CO2, CO and the Reverse Water Gas Shift reaction. The models then made it possible to simulate the evolution of partial flow rates in an isothermal plug flow reactor and were compared to experimental data.

Waldvogel, A., Fasolini, A., Basile, F., Thomas, S., Roger, A. (2024). Investigation of the kinetics of methanation of a post-coelectrolysis mixture on a Ni/CZP oxide catalyst. JOURNAL OF CO2 UTILIZATION, 85, 1-13 [10.1016/j.jcou.2024.102864].

Investigation of the kinetics of methanation of a post-coelectrolysis mixture on a Ni/CZP oxide catalyst

Fasolini, Andrea;Basile, Francesco;
2024

Abstract

The use of synthetic natural gas (SNG) as a plug-and-play fuel coming from renewables can help to overcome the limitations given by the intermittency of renewable energy. A way to implement the production of SNG pass through the co-electrolysis of CO2 to a mixture of hydrogen, carbon monoxide and carbon dioxide, steam and small amounts of methane, followed by CO and CO2 methanation. The presence of different reactants and processes requires the comprehension and quantification of the kinetics of the reactions involved with the aim of optimizing methanation. In this work a kinetic model that considers both the direct CO2 methanation and the indirect RWGS + CO methanation pathways has been developed over a Ni(10 %wt)/Ce0.33Zr0.63Pr0.04O2. The kinetic study made it possible to understand the influence of the reactants and products on the reactions through the calculation of reaction rates. This allowed to test, by linearization, the models found in the literature and their adjustment permitted to calculate sixteen kinetic parameters (activation energies, heats of adsorption and pre-exponential factors) present in the rate laws of methanation of CO2, CO and the Reverse Water Gas Shift reaction. The models then made it possible to simulate the evolution of partial flow rates in an isothermal plug flow reactor and were compared to experimental data.
2024
Waldvogel, A., Fasolini, A., Basile, F., Thomas, S., Roger, A. (2024). Investigation of the kinetics of methanation of a post-coelectrolysis mixture on a Ni/CZP oxide catalyst. JOURNAL OF CO2 UTILIZATION, 85, 1-13 [10.1016/j.jcou.2024.102864].
Waldvogel, Audrey; Fasolini, Andrea; Basile, Francesco; Thomas, Sebastien; Roger, Anne-Cecile
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2212982024001999-main.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 3.35 MB
Formato Adobe PDF
3.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/981417
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact