Electrocorticography is an established neural interfacing technique wherein an array of electrodes enables large-area recording from the cortical surface. Electrocorticography is commonly used for seizure mapping however the implantation of large-area electrocorticography arrays is a highly invasive procedure, requiring a craniotomy larger than the implant area to place the device. In this work, flexible thin-film electrode arrays are combined with concepts from soft robotics, to realize a large-area electrocorticography device that can change shape via integrated fluidic actuators. We show that the 32-electrode device can be packaged using origami-inspired folding into a compressed state and implanted through a small burr-hole craniotomy, then expanded on the surface of the brain for large-area cortical coverage. The implantation, expansion, and recording functionality of the device is confirmed in-vitro and in porcine in-vivo models. The integration of shape actuation into neural implants provides a clinically viable pathway to realize large-area neural interfaces via minimally invasive surgical techniques.

Coles L., Ventrella D., Carnicer-Lombarte A., Elmi A., Troughton J.G., Mariello M., et al. (2024). Origami-inspired soft fluidic actuation for minimally invasive large-area electrocorticography. NATURE COMMUNICATIONS, 15(1), 1-11 [10.1038/s41467-024-50597-2].

Origami-inspired soft fluidic actuation for minimally invasive large-area electrocorticography

Ventrella D.;Bacci M. L.;
2024

Abstract

Electrocorticography is an established neural interfacing technique wherein an array of electrodes enables large-area recording from the cortical surface. Electrocorticography is commonly used for seizure mapping however the implantation of large-area electrocorticography arrays is a highly invasive procedure, requiring a craniotomy larger than the implant area to place the device. In this work, flexible thin-film electrode arrays are combined with concepts from soft robotics, to realize a large-area electrocorticography device that can change shape via integrated fluidic actuators. We show that the 32-electrode device can be packaged using origami-inspired folding into a compressed state and implanted through a small burr-hole craniotomy, then expanded on the surface of the brain for large-area cortical coverage. The implantation, expansion, and recording functionality of the device is confirmed in-vitro and in porcine in-vivo models. The integration of shape actuation into neural implants provides a clinically viable pathway to realize large-area neural interfaces via minimally invasive surgical techniques.
2024
Coles L., Ventrella D., Carnicer-Lombarte A., Elmi A., Troughton J.G., Mariello M., et al. (2024). Origami-inspired soft fluidic actuation for minimally invasive large-area electrocorticography. NATURE COMMUNICATIONS, 15(1), 1-11 [10.1038/s41467-024-50597-2].
Coles L.; Ventrella D.; Carnicer-Lombarte A.; Elmi A.; Troughton J.G.; Mariello M.; El Hadwe S.; Woodington B.J.; Bacci M.L.; Malliaras G.G.; Barone D...espandi
File in questo prodotto:
File Dimensione Formato  
s41467-024-50597-2.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 5.73 MB
Formato Adobe PDF
5.73 MB Adobe PDF Visualizza/Apri
41467_2024_50597_MOESM1_ESM.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 897.3 kB
Formato Adobe PDF
897.3 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/980826
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact