A generalization of fractional linear viscoelasticity based on Scarpi's approach to variable-order fractional calculus is presented. After reviewing the general mathematical framework, a variable-order fractional Maxwell model is analysed as a prototypical example for the theory. Some physical considerations are then provided concerning the fractionalisation procedure and the choice of the transition functions. Lastly, the material functions for the considered model are derived and numerically evaluated for exponential-type and Mittag-Leffler-type order functions.

Giusti, A., Colombaro, I., Garra, R., Garrappa, R., Mentrelli, A. (2024). On variable-order fractional linear viscoelasticity. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 27(4), 1564-1578 [10.1007/s13540-024-00288-y].

On variable-order fractional linear viscoelasticity

Giusti, Andrea;Garra, Roberto;Mentrelli, Andrea
2024

Abstract

A generalization of fractional linear viscoelasticity based on Scarpi's approach to variable-order fractional calculus is presented. After reviewing the general mathematical framework, a variable-order fractional Maxwell model is analysed as a prototypical example for the theory. Some physical considerations are then provided concerning the fractionalisation procedure and the choice of the transition functions. Lastly, the material functions for the considered model are derived and numerically evaluated for exponential-type and Mittag-Leffler-type order functions.
2024
Giusti, A., Colombaro, I., Garra, R., Garrappa, R., Mentrelli, A. (2024). On variable-order fractional linear viscoelasticity. FRACTIONAL CALCULUS & APPLIED ANALYSIS, 27(4), 1564-1578 [10.1007/s13540-024-00288-y].
Giusti, Andrea; Colombaro, Ivano; Garra, Roberto; Garrappa, Roberto; Mentrelli, Andrea
File in questo prodotto:
File Dimensione Formato  
2024-FCAA.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 539.73 kB
Formato Adobe PDF
539.73 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/980739
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact