We present an overview of Task 2 of the seventh edition of the CheckThat! lab at the 2024 iteration of the Conference and Labs of the Evaluation Forum (CLEF). The task focuses on subjectivity detection in news articles and was offered in five languages: Arabic, Bulgarian, English, German, and Italian, as well as in a multilingual setting. The datasets for each language were carefully curated and annotated, comprising over 10,000 sentences from news articles. The task challenged participants to develop systems capable of distinguishing between subjective statements (reflecting personal opinions or biases) and objective ones (presenting factual information) at the sentence level. A total of 15 teams participated in the task, submitting 36 valid runs across all language tracks. The participants used a variety of approaches, with transformer-based models being the most popular choice. Strategies included fine-tuning monolingual and multilingual models, and leveraging English models with automatic translation for the non-English datasets. Some teams also explored ensembles, feature engineering, and innovative techniques such as few-shot learning and in-context learning with large language models. The evaluation was based on macro-averaged F1 score. The results varied across languages, with the best performance achieved for Italian and German, followed by English. The Arabic track proved particularly challenging, with no team surpassing an F1 score of 0.50. This task contributes to the broader goal of enhancing the reliability of automated content analysis in the context of misinformation detection and fact-checking. The paper provides detailed insights into the datasets, participant approaches, and results, offering a benchmark for the current state of subjectivity detection across multiple languages.

Julia Maria Struß, F.R. (2024). Overview of the CLEF-2024 CheckThat! Lab Task 2 on Subjectivity in News Articles. CEUR-WS.

Overview of the CLEF-2024 CheckThat! Lab Task 2 on Subjectivity in News Articles

Federico Ruggeri
;
Alberto Barrón-Cedeño;Andrea Galassi;
2024

Abstract

We present an overview of Task 2 of the seventh edition of the CheckThat! lab at the 2024 iteration of the Conference and Labs of the Evaluation Forum (CLEF). The task focuses on subjectivity detection in news articles and was offered in five languages: Arabic, Bulgarian, English, German, and Italian, as well as in a multilingual setting. The datasets for each language were carefully curated and annotated, comprising over 10,000 sentences from news articles. The task challenged participants to develop systems capable of distinguishing between subjective statements (reflecting personal opinions or biases) and objective ones (presenting factual information) at the sentence level. A total of 15 teams participated in the task, submitting 36 valid runs across all language tracks. The participants used a variety of approaches, with transformer-based models being the most popular choice. Strategies included fine-tuning monolingual and multilingual models, and leveraging English models with automatic translation for the non-English datasets. Some teams also explored ensembles, feature engineering, and innovative techniques such as few-shot learning and in-context learning with large language models. The evaluation was based on macro-averaged F1 score. The results varied across languages, with the best performance achieved for Italian and German, followed by English. The Arabic track proved particularly challenging, with no team surpassing an F1 score of 0.50. This task contributes to the broader goal of enhancing the reliability of automated content analysis in the context of misinformation detection and fact-checking. The paper provides detailed insights into the datasets, participant approaches, and results, offering a benchmark for the current state of subjectivity detection across multiple languages.
2024
CLEF 2024: Working Notes of the Conference and Labs of the Evaluation Forum
287
298
Julia Maria Struß, F.R. (2024). Overview of the CLEF-2024 CheckThat! Lab Task 2 on Subjectivity in News Articles. CEUR-WS.
Julia Maria Struß, Federico Ruggeri, Alberto Barrón-Cedeño, Firoj Alam, Dimitar Dimitrov, Andrea Galassi, Georgi Pachov, Ivan Koychev, Preslav Nakov, ...espandi
File in questo prodotto:
File Dimensione Formato  
paper-25.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 1.24 MB
Formato Adobe PDF
1.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/980321
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact