Bloodstream infections account for 30–40% of all cases of severe sepsis and septic shock, and are major causes of morbidity and mortality. Diagnosis of bloodstream infections must be performed promptly so that adequate antimicrobial therapy can be started and patient outcome improved. An ideal diagnostic technology would identify the infecting organism(s) and their determinants of antibiotic resistance, in a timely manner, so that appropriate pathogen-driven therapy could begin promptly. Unfortunately, despite the essential information it provides, blood culture, the gold standard, largely fails in this purpose because time is lost waiting for bacterial or fungal growth. Several efforts have been made to optimise the performance of blood culture, such as the development of technologies to obtain rapid detection of microorganism(s) directly in blood samples or in a positive blood culture. The ideal molecular method would analyse a patient’s blood sample and provide all the information needed to immediately direct optimal antimicrobial therapy for bacterial or fungal infections. Furthermore, it would provide data to assess the effectiveness of the therapy by measuring the clearance of microbial nucleic acids from the blood over time. None of the currently available molecular methods is sufficiently rapid, accurate or informative to achieve this. This review examines the principal advantages and limitations of some traditional and molecular methods commercially available to help the microbiologist and the clinician in the management of bloodstream infections.

Conventional and molecular techniques for the early diagnosis of bacteraemia.

PAOLUCCI, MICHELA;LANDINI, MARIA PAOLA;SAMBRI, VITTORIO
2010

Abstract

Bloodstream infections account for 30–40% of all cases of severe sepsis and septic shock, and are major causes of morbidity and mortality. Diagnosis of bloodstream infections must be performed promptly so that adequate antimicrobial therapy can be started and patient outcome improved. An ideal diagnostic technology would identify the infecting organism(s) and their determinants of antibiotic resistance, in a timely manner, so that appropriate pathogen-driven therapy could begin promptly. Unfortunately, despite the essential information it provides, blood culture, the gold standard, largely fails in this purpose because time is lost waiting for bacterial or fungal growth. Several efforts have been made to optimise the performance of blood culture, such as the development of technologies to obtain rapid detection of microorganism(s) directly in blood samples or in a positive blood culture. The ideal molecular method would analyse a patient’s blood sample and provide all the information needed to immediately direct optimal antimicrobial therapy for bacterial or fungal infections. Furthermore, it would provide data to assess the effectiveness of the therapy by measuring the clearance of microbial nucleic acids from the blood over time. None of the currently available molecular methods is sufficiently rapid, accurate or informative to achieve this. This review examines the principal advantages and limitations of some traditional and molecular methods commercially available to help the microbiologist and the clinician in the management of bloodstream infections.
2010
Paolucci M.; Landini M.; Sambri V.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/97963
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 80
  • ???jsp.display-item.citation.isi??? 80
social impact