Six titanium disks with six different surface treatments were examined: SS: smooth (polished) surface; TPS: plasma spray; C100: sand blasting by aluminum oxide (Al2O3) diameter 100 microm and acid etching; C150: sand blasting by Al2O3 diameter 150 microm and acid etching; B60: sand blasting by zirconium oxide (ZrO2) diameter 60 microm and acid etching; and B120: sand blasting by ZrO2 diameter 120 microm and acid etching. METHODS: The surface characteristics were determined by scanning electron microscopy (SEM) observation and a roughness tester. Raman spectroscopy was used to determine the presence of residual substances on the samples. Cells were seeded onto the disk and after 24 hours, 6 days, and 12 days were observed under SEM and growth curves generated with a cell counter. Some samples were used to determine alkaline phosphatase activity (ALP), using a colorimetric assay. RESULTS: SEM observation revealed drastic differences in surface microtopography, with a higher cell density on sand-blasted and acid-etched (SLA) samples than SS and TPS, and more regularly aligned cells on B60 and B120 surfaces than on the others. The growth curves showed a greater adhesion of cells on the etched/blasted surfaces compared to the SS and TPS surfaces. The number of cells increased on all the SLA samples, especially B60, throughout the experiment. At the same time, there was considerable ALP activity on the B60 sample, while it remained at extremely low levels on SS and TPS surfaces. Raman analyses revealed Al2O3 debris on C100 and C150, partly explaining the poorer performances of these two surface treatments, since this substance was shown to be toxic for cultured osteoblasts. CONCLUSIONS: Surface treatments influence the growth and the metabolic activity of cultured osteoblasts, and B60 seems to be the most favorable surface inducing a more pronounced proliferation of cells together with a high differentiation degree.

Differenti titanium surface treatment influences human mandibular osteoblast response / S. Guizzardi; C. Galli; D. Martini; S. Belletti; A. Tinti; M. Raspanti; P. Taddei; A. Ruggeri; R. Scandroglio. - In: JOURNAL OF PERIODONTOLOGY. - ISSN 0022-3492. - STAMPA. - 75:(2004), pp. 273-282.

Differenti titanium surface treatment influences human mandibular osteoblast response

MARTINI, DESIREE;TINTI, ANNA;TADDEI, PAOLA;RUGGERI, ALESSANDRO;
2004

Abstract

Six titanium disks with six different surface treatments were examined: SS: smooth (polished) surface; TPS: plasma spray; C100: sand blasting by aluminum oxide (Al2O3) diameter 100 microm and acid etching; C150: sand blasting by Al2O3 diameter 150 microm and acid etching; B60: sand blasting by zirconium oxide (ZrO2) diameter 60 microm and acid etching; and B120: sand blasting by ZrO2 diameter 120 microm and acid etching. METHODS: The surface characteristics were determined by scanning electron microscopy (SEM) observation and a roughness tester. Raman spectroscopy was used to determine the presence of residual substances on the samples. Cells were seeded onto the disk and after 24 hours, 6 days, and 12 days were observed under SEM and growth curves generated with a cell counter. Some samples were used to determine alkaline phosphatase activity (ALP), using a colorimetric assay. RESULTS: SEM observation revealed drastic differences in surface microtopography, with a higher cell density on sand-blasted and acid-etched (SLA) samples than SS and TPS, and more regularly aligned cells on B60 and B120 surfaces than on the others. The growth curves showed a greater adhesion of cells on the etched/blasted surfaces compared to the SS and TPS surfaces. The number of cells increased on all the SLA samples, especially B60, throughout the experiment. At the same time, there was considerable ALP activity on the B60 sample, while it remained at extremely low levels on SS and TPS surfaces. Raman analyses revealed Al2O3 debris on C100 and C150, partly explaining the poorer performances of these two surface treatments, since this substance was shown to be toxic for cultured osteoblasts. CONCLUSIONS: Surface treatments influence the growth and the metabolic activity of cultured osteoblasts, and B60 seems to be the most favorable surface inducing a more pronounced proliferation of cells together with a high differentiation degree.
2004
Differenti titanium surface treatment influences human mandibular osteoblast response / S. Guizzardi; C. Galli; D. Martini; S. Belletti; A. Tinti; M. Raspanti; P. Taddei; A. Ruggeri; R. Scandroglio. - In: JOURNAL OF PERIODONTOLOGY. - ISSN 0022-3492. - STAMPA. - 75:(2004), pp. 273-282.
S. Guizzardi; C. Galli; D. Martini; S. Belletti; A. Tinti; M. Raspanti; P. Taddei; A. Ruggeri; R. Scandroglio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/9780
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
  • ???jsp.display-item.citation.isi??? 63
social impact