We prove that outer commutator words are uniformly concise, i.e. if an outer commutator word w takes m different values in a group G, then the order of the verbal subgroup w(G) is bounded by a function depending only on m, and not on w or G. This is obtained as a consequence of a structure theorem for the subgroup w(G), which is valid if G is soluble, and without assuming that w takes finitely many values in G. More precisely, there is an abelian series of w(G), such that every section of the series can be generated by values of w all of whose powers are also values of w in that section. For the proof of this latter result, we introduce a new representation of outer commutator words by means of binary trees, and we use the structure of the trees to set up an appropriate induction.
G. Fernández-Alcober, M. Morigi (2010). Outer commutator words are uniformly concise. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 82, 581-595 [10.1112/jlms/jdq047].
Outer commutator words are uniformly concise
MORIGI, MARTA
2010
Abstract
We prove that outer commutator words are uniformly concise, i.e. if an outer commutator word w takes m different values in a group G, then the order of the verbal subgroup w(G) is bounded by a function depending only on m, and not on w or G. This is obtained as a consequence of a structure theorem for the subgroup w(G), which is valid if G is soluble, and without assuming that w takes finitely many values in G. More precisely, there is an abelian series of w(G), such that every section of the series can be generated by values of w all of whose powers are also values of w in that section. For the proof of this latter result, we introduce a new representation of outer commutator words by means of binary trees, and we use the structure of the trees to set up an appropriate induction.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.