We prove that outer commutator words are uniformly concise, i.e. if an outer commutator word w takes m different values in a group G, then the order of the verbal subgroup w(G) is bounded by a function depending only on m, and not on w or G. This is obtained as a consequence of a structure theorem for the subgroup w(G), which is valid if G is soluble, and without assuming that w takes finitely many values in G. More precisely, there is an abelian series of w(G), such that every section of the series can be generated by values of w all of whose powers are also values of w in that section. For the proof of this latter result, we introduce a new representation of outer commutator words by means of binary trees, and we use the structure of the trees to set up an appropriate induction.

G. Fernández-Alcober, M. Morigi (2010). Outer commutator words are uniformly concise. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 82, 581-595 [10.1112/jlms/jdq047].

Outer commutator words are uniformly concise

MORIGI, MARTA
2010

Abstract

We prove that outer commutator words are uniformly concise, i.e. if an outer commutator word w takes m different values in a group G, then the order of the verbal subgroup w(G) is bounded by a function depending only on m, and not on w or G. This is obtained as a consequence of a structure theorem for the subgroup w(G), which is valid if G is soluble, and without assuming that w takes finitely many values in G. More precisely, there is an abelian series of w(G), such that every section of the series can be generated by values of w all of whose powers are also values of w in that section. For the proof of this latter result, we introduce a new representation of outer commutator words by means of binary trees, and we use the structure of the trees to set up an appropriate induction.
2010
G. Fernández-Alcober, M. Morigi (2010). Outer commutator words are uniformly concise. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY, 82, 581-595 [10.1112/jlms/jdq047].
G. Fernández-Alcober; M. Morigi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/97617
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact