In this paper we continue the analysis of an Alt-Caffarelli-Friedman (ACF) monotonicity formula in Carnot groups of step $s >1$ confirming the existence of counterexamples to the monotone increasing behavior. In particular, we provide a sufficient condition that implies the existence of some counterexamples to the monotone increasing behavior of the ACF formula in Carnot groups. The main tool is based on the lack of orthogonality of harmonic polynomials in Carnot groups. This paper generalizes the results proved in n Ferrari and Forcillo (Atti Accad Naz Lincei Rend Lincei Mat Appl 34(2):295–306, 2023).

Ferrari, F., Giovagnoli, D. (2025). Some counterexamples to Alt–Caffarelli–Friedman monotonicity formulas in Carnot groups. ANNALI DI MATEMATICA PURA ED APPLICATA, 204(2), 427-445 [10.1007/s10231-024-01490-8].

Some counterexamples to Alt–Caffarelli–Friedman monotonicity formulas in Carnot groups

Ferrari, Fausto;Giovagnoli, Davide
2025

Abstract

In this paper we continue the analysis of an Alt-Caffarelli-Friedman (ACF) monotonicity formula in Carnot groups of step $s >1$ confirming the existence of counterexamples to the monotone increasing behavior. In particular, we provide a sufficient condition that implies the existence of some counterexamples to the monotone increasing behavior of the ACF formula in Carnot groups. The main tool is based on the lack of orthogonality of harmonic polynomials in Carnot groups. This paper generalizes the results proved in n Ferrari and Forcillo (Atti Accad Naz Lincei Rend Lincei Mat Appl 34(2):295–306, 2023).
2025
Ferrari, F., Giovagnoli, D. (2025). Some counterexamples to Alt–Caffarelli–Friedman monotonicity formulas in Carnot groups. ANNALI DI MATEMATICA PURA ED APPLICATA, 204(2), 427-445 [10.1007/s10231-024-01490-8].
Ferrari, Fausto; Giovagnoli, Davide
File in questo prodotto:
File Dimensione Formato  
s10231-024-01490-8.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 382.56 kB
Formato Adobe PDF
382.56 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/976117
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact