We study the non-abelian tensor square for the class of groups G that are finitely generated modulo their derived subgroup. In particular, we find conditions on G/G′ so that the non-abelian tensor squar of G is isomorphic to the direct product of Nabla(G) and the non-abelian exterior square of G. For any group G, we characterize the non-abelian exterior square n terms of a presentation of G. Finally, we apply our results to some classes of groups, such as the classes of free solvable and free nilpotent groups of finite rank, and some classes of finite p-groups.

Some structural results on the non-abelian tensor square of groups

MORIGI, MARTA
2010

Abstract

We study the non-abelian tensor square for the class of groups G that are finitely generated modulo their derived subgroup. In particular, we find conditions on G/G′ so that the non-abelian tensor squar of G is isomorphic to the direct product of Nabla(G) and the non-abelian exterior square of G. For any group G, we characterize the non-abelian exterior square n terms of a presentation of G. Finally, we apply our results to some classes of groups, such as the classes of free solvable and free nilpotent groups of finite rank, and some classes of finite p-groups.
2010
R. Blyth; F. Fumagalli; M. Morigi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/97596
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 39
social impact