We prove a generalization of the strong subadditivity of the von Neumann entropy for bosonic quantum Gaussian systems. Such generalization determines the minimum values of linear combinations of the entropies of subsystems associated to arbitrary linear functions of the quadratures, and holds for arbitrary quantum states including the scenario where the entropies are conditioned on a memory quantum system. We apply our result to prove new entropic uncertainty relations with quantum memory, a generalization of the quantum Entropy Power Inequality, and the linear time scaling of the entanglement entropy produced by quadratic Hamiltonians.

De Palma G., Trevisan D. (2024). The generalized strong subadditivity of the von Neumann entropy for bosonic quantum systems. JOURNAL OF MATHEMATICAL PHYSICS, 65(6), 1-25 [10.1063/5.0131431].

The generalized strong subadditivity of the von Neumann entropy for bosonic quantum systems

De Palma G.
;
2024

Abstract

We prove a generalization of the strong subadditivity of the von Neumann entropy for bosonic quantum Gaussian systems. Such generalization determines the minimum values of linear combinations of the entropies of subsystems associated to arbitrary linear functions of the quadratures, and holds for arbitrary quantum states including the scenario where the entropies are conditioned on a memory quantum system. We apply our result to prove new entropic uncertainty relations with quantum memory, a generalization of the quantum Entropy Power Inequality, and the linear time scaling of the entanglement entropy produced by quadratic Hamiltonians.
2024
De Palma G., Trevisan D. (2024). The generalized strong subadditivity of the von Neumann entropy for bosonic quantum systems. JOURNAL OF MATHEMATICAL PHYSICS, 65(6), 1-25 [10.1063/5.0131431].
De Palma G.; Trevisan D.
File in questo prodotto:
File Dimensione Formato  
2105 The generalized strong subadditivity of the von Neumann entropy for bosonic quantum systems.pdf

embargo fino al 06/06/2025

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso libero gratuito
Dimensione 4.4 MB
Formato Adobe PDF
4.4 MB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/974545
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact