Testing is a critical factor for modern large-scale mixed-mode circuits. Strategies for mitigating test cost and duration include moving significant parts of the test hardware on-chip. This paper presents a novel low-overhead approach for design for test and built-in self-test of analog and mixed-mode blocks, derived from the oscillation-based test framework. The latter is enhanced by the use of complex oscillation regimes, improving fault coverage and enabling forms of parametric or specification-based testing. This technique, initially proposed targeting large subsystems such as A/D converters, is here illustrated at a much finer granularity, considering its application to analog-filter stages, and also proving its suitability to backfit existing designs. The simple case of a switched-capacitor second-order bandpass stage is used for illustration discussing how deviations from nominal gain, central frequency, and quality factor can be detected from measurements not requiring A/D stages. A sample design is validated by simulations run at the layout level, including Monte Carlo analysis and simulations based on random fault injections.

Complex Oscillation-Based Test and Its Application to Analog Filters

CALLEGARI, SERGIO;
2010

Abstract

Testing is a critical factor for modern large-scale mixed-mode circuits. Strategies for mitigating test cost and duration include moving significant parts of the test hardware on-chip. This paper presents a novel low-overhead approach for design for test and built-in self-test of analog and mixed-mode blocks, derived from the oscillation-based test framework. The latter is enhanced by the use of complex oscillation regimes, improving fault coverage and enabling forms of parametric or specification-based testing. This technique, initially proposed targeting large subsystems such as A/D converters, is here illustrated at a much finer granularity, considering its application to analog-filter stages, and also proving its suitability to backfit existing designs. The simple case of a switched-capacitor second-order bandpass stage is used for illustration discussing how deviations from nominal gain, central frequency, and quality factor can be detected from measurements not requiring A/D stages. A sample design is validated by simulations run at the layout level, including Monte Carlo analysis and simulations based on random fault injections.
2010
S. Callegari; F. Pareschi; G. Setti; M. Soma
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/97434
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact