The primary objective of this study is to investigate variations in gas temperature and average velocity during the laminar-turbulent transition of compressible flow. This investigation encompasses an exploration of the effect of Mach number on transitional Reynolds number. Experiments were conducted utilizing a pair of adiabatic stainless steel microtubes with a diameter (D) of 131.6 mu m. The first microtube was dedicated to measuring local pressure to obtain friction factor, local Mach number, and bulk temperature. The second microtube was employed for measuring local wall temperature. Additionally, a stainless steel microtube with a diameter (D) of 124 mu m and a rectangular microchannel with a hydraulic diameter (Dh) of 99.36 mu m were incorporated in the study. Friction factor, Mach number, and bulk temperature were determined by measuring mass flow rate and local pressure near the outlet. The measured mass flow rate exhibited a slight increase that plateaued during the laminar-turbulent transition as the Reynolds number increased. In laminar flow, an increase in the Reynolds number resulted in an increase of the Mach number and a reduction in bulk temperature. Conversely, during the laminar-turbulent transition, the Mach number either remained constant or decreased, and the bulk temperature increased due to the conversion of kinetic energy to thermal energy. Experimental validation of this phenomenon was achieved by measuring the wall temperature of an adiabatic microtube.
Hong C., Asako Y., Morini G.L., Faghri M. (2024). Variations in gas temperature and average velocity during laminar-turbulent transition in high-speed gas flow through microtubes. EXPERIMENTAL THERMAL AND FLUID SCIENCE, 155, 1-10 [10.1016/j.expthermflusci.2024.111196].
Variations in gas temperature and average velocity during laminar-turbulent transition in high-speed gas flow through microtubes
Morini G. L.;
2024
Abstract
The primary objective of this study is to investigate variations in gas temperature and average velocity during the laminar-turbulent transition of compressible flow. This investigation encompasses an exploration of the effect of Mach number on transitional Reynolds number. Experiments were conducted utilizing a pair of adiabatic stainless steel microtubes with a diameter (D) of 131.6 mu m. The first microtube was dedicated to measuring local pressure to obtain friction factor, local Mach number, and bulk temperature. The second microtube was employed for measuring local wall temperature. Additionally, a stainless steel microtube with a diameter (D) of 124 mu m and a rectangular microchannel with a hydraulic diameter (Dh) of 99.36 mu m were incorporated in the study. Friction factor, Mach number, and bulk temperature were determined by measuring mass flow rate and local pressure near the outlet. The measured mass flow rate exhibited a slight increase that plateaued during the laminar-turbulent transition as the Reynolds number increased. In laminar flow, an increase in the Reynolds number resulted in an increase of the Mach number and a reduction in bulk temperature. Conversely, during the laminar-turbulent transition, the Mach number either remained constant or decreased, and the bulk temperature increased due to the conversion of kinetic energy to thermal energy. Experimental validation of this phenomenon was achieved by measuring the wall temperature of an adiabatic microtube.File | Dimensione | Formato | |
---|---|---|---|
manuscript_revision Hong.pdf
embargo fino al 30/03/2025
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
472.97 kB
Formato
Adobe PDF
|
472.97 kB | Adobe PDF | Visualizza/Apri Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.