This article discusses the potential sources and consequences of unfairness in artificial intelligence (AI) predictive tools used for anti-corruption efforts. Using the examples of three AI-based anti-corruption tools from Brazil—risk estimation of corrupt behaviour in public procurement, among public officials, and of female straw candidates in electoral contests—it illustrates how unfairness can emerge at the infrastructural, individual, and institutional levels. The article draws on interviews with law enforcement officials directly involved in the development of anti-corruption tools, as well as academic and grey literature, including official reports and dissertations on the tools used as examples. Potential sources of unfairness include problematic data, statistical learning issues, the personal values and beliefs of developers and users, and the governance and practices within the organisations in which these tools are created and deployed. The findings suggest that the tools analysed were trained using inputs from past anti-corruption procedures and practices and based on common sense assumptions about corruption, which are not necessarily free from unfair disproportionality and discrimination. In designing the ACTs, the developers did not reflect on the risks of unfairness, nor did they prioritise the use of specific technological solutions to identify and mitigate this type of problem. Although the tools analysed do not make automated decisions and only support human action, their algorithms are not open to external scrutiny.

Fernanda Odilla (2024). Unfairness in AI Anti-Corruption Tools: Main Drivers and Consequences. MINDS AND MACHINES, 34(28), 1-35 [10.1007/s11023-024-09688-8].

Unfairness in AI Anti-Corruption Tools: Main Drivers and Consequences

Fernanda Odilla
Primo
2024

Abstract

This article discusses the potential sources and consequences of unfairness in artificial intelligence (AI) predictive tools used for anti-corruption efforts. Using the examples of three AI-based anti-corruption tools from Brazil—risk estimation of corrupt behaviour in public procurement, among public officials, and of female straw candidates in electoral contests—it illustrates how unfairness can emerge at the infrastructural, individual, and institutional levels. The article draws on interviews with law enforcement officials directly involved in the development of anti-corruption tools, as well as academic and grey literature, including official reports and dissertations on the tools used as examples. Potential sources of unfairness include problematic data, statistical learning issues, the personal values and beliefs of developers and users, and the governance and practices within the organisations in which these tools are created and deployed. The findings suggest that the tools analysed were trained using inputs from past anti-corruption procedures and practices and based on common sense assumptions about corruption, which are not necessarily free from unfair disproportionality and discrimination. In designing the ACTs, the developers did not reflect on the risks of unfairness, nor did they prioritise the use of specific technological solutions to identify and mitigate this type of problem. Although the tools analysed do not make automated decisions and only support human action, their algorithms are not open to external scrutiny.
2024
Fernanda Odilla (2024). Unfairness in AI Anti-Corruption Tools: Main Drivers and Consequences. MINDS AND MACHINES, 34(28), 1-35 [10.1007/s11023-024-09688-8].
Fernanda Odilla
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/973374
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact