In this paper we will establish a multiplicity result for a double perturbed Schrödinger Bopp-Podolsky-Proca system on a compact 3-dimensional Riemannian manifold without boundary. Using the Lusternik-Schnirelmann Category, we will prove that the number of solutions of the system depends on the topological properties of the manifold.

Matteo Talluri (2024). A multiplicity result for a double perturbed Schrödinger-Bopp-Podolsky-Proca system. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 540(2), 1-13 [10.1016/j.jmaa.2024.128648].

A multiplicity result for a double perturbed Schrödinger-Bopp-Podolsky-Proca system

Matteo Talluri
2024

Abstract

In this paper we will establish a multiplicity result for a double perturbed Schrödinger Bopp-Podolsky-Proca system on a compact 3-dimensional Riemannian manifold without boundary. Using the Lusternik-Schnirelmann Category, we will prove that the number of solutions of the system depends on the topological properties of the manifold.
2024
Matteo Talluri (2024). A multiplicity result for a double perturbed Schrödinger-Bopp-Podolsky-Proca system. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 540(2), 1-13 [10.1016/j.jmaa.2024.128648].
Matteo Talluri
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/973079
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact