Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex etiology that lacks effective treatment. The therapeutic goals include alleviating symptoms, such as moisturizing and applying antibacterial and anti-inflammatory medications. Hence, there is an urgent need to develop a patch that effectively alleviates most of the AD symptoms. In this study, we employed a "green" cross-linking approach of poly(vinyl alcohol) (PVA) using glycerol, and we combined it with polyacrylonitrile (PAN) to fabricate core-shell (CS) nanofibers through electrospinning. Our designed structure offers multiple benefits as the core ensures controlled drug release and increases the strength of the patch, while the shell provides skin moisturization and exudate absorption. The efficient PVA cross-linking method facilitates the inclusion of sensitive molecules such as fermented oils. In vitro studies demonstrate the patches' exceptional biocompatibility and efficacy in minimizing cell ingrowth into the CS structure containing argan oil, a property highly desirable for easy removal of the patch. Histological examinations conducted on an ex vivo model showed the nonirritant properties of developed patches. Furthermore, the eradication of Staphylococcus aureus bacteria confirms the potential use of CS nanofibers loaded with argan oil or norfloxacin, separately, as an antibacterial patch for infected AD wounds. In vivo patch application studies on patients, including one with AD, demonstrated ideal patches' moisturizing effect. This innovative approach shows significant promise in enhancing life quality for AD sufferers by improving skin hydration and avoiding infections.
Kosik-Koziol, A., Nakielski, P., Rybak, D., Fraczek, W., Rinoldi, C., Lanzi, M., et al. (2024). Adhesive Antibacterial Moisturizing Nanostructured Skin Patch for Sustainable Development of Atopic Dermatitis Treatment in Humans. ACS APPLIED MATERIALS & INTERFACES, 16, 32128-32146 [10.1021/acsami.4c06662].
Adhesive Antibacterial Moisturizing Nanostructured Skin Patch for Sustainable Development of Atopic Dermatitis Treatment in Humans
Lanzi, M;
2024
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disease with a complex etiology that lacks effective treatment. The therapeutic goals include alleviating symptoms, such as moisturizing and applying antibacterial and anti-inflammatory medications. Hence, there is an urgent need to develop a patch that effectively alleviates most of the AD symptoms. In this study, we employed a "green" cross-linking approach of poly(vinyl alcohol) (PVA) using glycerol, and we combined it with polyacrylonitrile (PAN) to fabricate core-shell (CS) nanofibers through electrospinning. Our designed structure offers multiple benefits as the core ensures controlled drug release and increases the strength of the patch, while the shell provides skin moisturization and exudate absorption. The efficient PVA cross-linking method facilitates the inclusion of sensitive molecules such as fermented oils. In vitro studies demonstrate the patches' exceptional biocompatibility and efficacy in minimizing cell ingrowth into the CS structure containing argan oil, a property highly desirable for easy removal of the patch. Histological examinations conducted on an ex vivo model showed the nonirritant properties of developed patches. Furthermore, the eradication of Staphylococcus aureus bacteria confirms the potential use of CS nanofibers loaded with argan oil or norfloxacin, separately, as an antibacterial patch for infected AD wounds. In vivo patch application studies on patients, including one with AD, demonstrated ideal patches' moisturizing effect. This innovative approach shows significant promise in enhancing life quality for AD sufferers by improving skin hydration and avoiding infections.File | Dimensione | Formato | |
---|---|---|---|
postprint after referee.pdf
embargo fino al 14/06/2025
Descrizione: file postprint
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione
967.85 kB
Formato
Adobe PDF
|
967.85 kB | Adobe PDF | Visualizza/Apri Contatta l'autore |
am4c06662_si_001.pdf
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Altra tipologia di licenza compatibile con Open Access
Dimensione
1.21 MB
Formato
Adobe PDF
|
1.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.