In this paper, we prove unique continuation properties for linear variable coefficient Schrodinger equations with bounded real potentials. Under certain smallness conditions on the leading coefficients, we prove that solutions decaying faster than any cubic exponential rate at two different times must be identically zero. Assuming a transversally anisotropic type condition, we recover the sharp Gaussian (quadratic exponential) rate in the series of works by Escauriaza-Kenig-Ponce-Vega [On uniqueness properties of solutions of Schrodinger equations, Comm. Partial Differential Equations 31(10-12) (2006) 1811-1823; Hardy's uncertainty principle, convexity and Schrodinger evolutions, J. Eur. Math. Soc. (JEMS) 10(4) (2008) 883-907; The sharp Hardy uncertainty principle for Schrodinger evolutions, Duke Math. J. 155(1) (2010) 163-187].

Federico, S., Li, Z., Yu, X. (2025). On the uniqueness of variable coefficient Schrödinger equations. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 27(3), 1-45 [10.1142/s0219199724500160].

On the uniqueness of variable coefficient Schrödinger equations

Federico, Serena;
2025

Abstract

In this paper, we prove unique continuation properties for linear variable coefficient Schrodinger equations with bounded real potentials. Under certain smallness conditions on the leading coefficients, we prove that solutions decaying faster than any cubic exponential rate at two different times must be identically zero. Assuming a transversally anisotropic type condition, we recover the sharp Gaussian (quadratic exponential) rate in the series of works by Escauriaza-Kenig-Ponce-Vega [On uniqueness properties of solutions of Schrodinger equations, Comm. Partial Differential Equations 31(10-12) (2006) 1811-1823; Hardy's uncertainty principle, convexity and Schrodinger evolutions, J. Eur. Math. Soc. (JEMS) 10(4) (2008) 883-907; The sharp Hardy uncertainty principle for Schrodinger evolutions, Duke Math. J. 155(1) (2010) 163-187].
2025
Federico, S., Li, Z., Yu, X. (2025). On the uniqueness of variable coefficient Schrödinger equations. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 27(3), 1-45 [10.1142/s0219199724500160].
Federico, Serena; Li, Zongyuan; Yu, Xueying
File in questo prodotto:
File Dimensione Formato  
Federico-Li-Yu_Uniqueness of Variable Schrödinger.pdf

Open Access dal 29/05/2025

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per accesso libero gratuito
Dimensione 294.48 kB
Formato Adobe PDF
294.48 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/972222
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact