The magnetic phase diagram of a polar ferrimagnet CaBaFe4O7 with a magnetic easy axis has been investigated by measurements of magnetization, specific heat, and magnetoelectricity. A ferrimagnetic transition takes place at TC1=275 K within the orthorhombic phase followed by a second magnetic transition at TC2=211 K. Below TC2, successive metamagnetic transitions occur for magnetic fields applied perpendicular to the easy axis, implying a sequential emergence of magnetic states which are neither collinear nor coplanar. The observation of the static magnetoelectric effect was limited to temperatures below 120 K due to the conducting nature of the crystals at higher temperatures. The magnitude of the ferroelectric polarization shows large changes between the different field-induced magnetic phases. The low-field state is characterized by a large linear magnetoelectric coefficient of αcc=39 ps/m, while a gigantic polarization change of ΔP=850 μC/m2 is observed for μoH=14 T applied along the easy axis.

Kocsis V., Tokunaga Y., Bordacs S., Kriener M., Puri A., Zeitler U., et al. (2016). Magnetoelectric effect and magnetic phase diagram of a polar ferrimagnet CaBaFe4O7. PHYSICAL REVIEW. B, 93(1), 014444-014451 [10.1103/PhysRevB.93.014444].

Magnetoelectric effect and magnetic phase diagram of a polar ferrimagnet CaBaFe4O7

Puri A.;
2016

Abstract

The magnetic phase diagram of a polar ferrimagnet CaBaFe4O7 with a magnetic easy axis has been investigated by measurements of magnetization, specific heat, and magnetoelectricity. A ferrimagnetic transition takes place at TC1=275 K within the orthorhombic phase followed by a second magnetic transition at TC2=211 K. Below TC2, successive metamagnetic transitions occur for magnetic fields applied perpendicular to the easy axis, implying a sequential emergence of magnetic states which are neither collinear nor coplanar. The observation of the static magnetoelectric effect was limited to temperatures below 120 K due to the conducting nature of the crystals at higher temperatures. The magnitude of the ferroelectric polarization shows large changes between the different field-induced magnetic phases. The low-field state is characterized by a large linear magnetoelectric coefficient of αcc=39 ps/m, while a gigantic polarization change of ΔP=850 μC/m2 is observed for μoH=14 T applied along the easy axis.
2016
Kocsis V., Tokunaga Y., Bordacs S., Kriener M., Puri A., Zeitler U., et al. (2016). Magnetoelectric effect and magnetic phase diagram of a polar ferrimagnet CaBaFe4O7. PHYSICAL REVIEW. B, 93(1), 014444-014451 [10.1103/PhysRevB.93.014444].
Kocsis V.; Tokunaga Y.; Bordacs S.; Kriener M.; Puri A.; Zeitler U.; Taguchi Y.; Tokura Y.; Kezsmarki I.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/971747
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact