Various string vibration models exist; linear models are common in musical acoustics but lack accuracy for complex phenomena. Nonlinear terms are necessary for pitch glides and modal couplings at higher amplitudes. Realistic boundary conditions are vital, often overlooked for simplicity. This study proposes an efficient time-stepping routine for nonlinear strings with energy-storing boundaries, derived from the Scalar Auxiliary Variable method, allowing fast inversion using the Sherman-Morisson formula.

Ducceschi, M., Mousseau, A., Bilbao, S., Russo, R. (2024). Fast simulation of the Kirchhoff-Carrier string with an energy-storing boundary condition using a Scalar Auxiliary Variable approach. Elsevier [10.1016/j.ifacol.2024.08.284].

Fast simulation of the Kirchhoff-Carrier string with an energy-storing boundary condition using a Scalar Auxiliary Variable approach

Michele Ducceschi;Riccardo Russo
2024

Abstract

Various string vibration models exist; linear models are common in musical acoustics but lack accuracy for complex phenomena. Nonlinear terms are necessary for pitch glides and modal couplings at higher amplitudes. Realistic boundary conditions are vital, often overlooked for simplicity. This study proposes an efficient time-stepping routine for nonlinear strings with energy-storing boundaries, derived from the Scalar Auxiliary Variable method, allowing fast inversion using the Sherman-Morisson formula.
2024
Proceedings of the 8th IFAC Workshop on Lagrangian and Hamiltonian Methods for Non Linear Control
220
225
Ducceschi, M., Mousseau, A., Bilbao, S., Russo, R. (2024). Fast simulation of the Kirchhoff-Carrier string with an energy-storing boundary condition using a Scalar Auxiliary Variable approach. Elsevier [10.1016/j.ifacol.2024.08.284].
Ducceschi, Michele; Mousseau, Alexis; Bilbao, Stefan; Russo, Riccardo
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S2405896324010267-main.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Creative commons
Dimensione 875.45 kB
Formato Adobe PDF
875.45 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/971654
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact