Fibrosis is a pathological condition consisting of a delayed deposition and remodeling of the extracellular matrix (ECM) by fibroblasts. This deregulation is mostly triggered by a chronic stimulus mediated by pro-inflammatory cytokines, such as TNF-alpha and IL-1, which activate fibroblasts. Due to their anti-inflammatory and immunosuppressive potential, dental pulp stem cells (DPSCs) could affect fibrotic processes. This study aims to clarify if DPSCs can affect fibroblast activation and modulate collagen deposition. We set up a transwell co-culture system, where DPSCs were seeded above the monolayer of fibroblasts and stimulated with LPS or a combination of TNF-alpha and IL-1 beta and quantified a set of genes involved in inflammasome activation or ECM deposition. Cytokines-stimulated co-cultured fibroblasts, compared to unstimulated ones, showed a significant increase in the expression of IL-1 beta, IL-6, NAIP, AIM2, CASP1, FN1, and TGF-beta genes. At the protein level, IL-1 beta and IL-6 release as well as FN1 were increased in stimulated, co-cultured fibroblasts. Moreover, we found a significant increase of MMP-9 production, suggesting a role of DPSCs in ECM remodeling. Our data seem to suggest a crosstalk between cultured fibroblasts and DPSCs, which seems to modulate genes involved in inflammasome activation, ECM deposition, wound healing, and fibrosis.

Zanini, G., Bertani, G., Di Tinco, R., Pisciotta, A., Bertoni, L., Selleri, V., et al. (2024). Dental Pulp Stem Cells Modulate Inflammasome Pathway and Collagen Deposition of Dermal Fibroblasts. CELLS, 13(10), 1-9 [10.3390/cells13100836].

Dental Pulp Stem Cells Modulate Inflammasome Pathway and Collagen Deposition of Dermal Fibroblasts

Mattioli, Anna Vittoria
Membro del Collaboration Group
;
2024

Abstract

Fibrosis is a pathological condition consisting of a delayed deposition and remodeling of the extracellular matrix (ECM) by fibroblasts. This deregulation is mostly triggered by a chronic stimulus mediated by pro-inflammatory cytokines, such as TNF-alpha and IL-1, which activate fibroblasts. Due to their anti-inflammatory and immunosuppressive potential, dental pulp stem cells (DPSCs) could affect fibrotic processes. This study aims to clarify if DPSCs can affect fibroblast activation and modulate collagen deposition. We set up a transwell co-culture system, where DPSCs were seeded above the monolayer of fibroblasts and stimulated with LPS or a combination of TNF-alpha and IL-1 beta and quantified a set of genes involved in inflammasome activation or ECM deposition. Cytokines-stimulated co-cultured fibroblasts, compared to unstimulated ones, showed a significant increase in the expression of IL-1 beta, IL-6, NAIP, AIM2, CASP1, FN1, and TGF-beta genes. At the protein level, IL-1 beta and IL-6 release as well as FN1 were increased in stimulated, co-cultured fibroblasts. Moreover, we found a significant increase of MMP-9 production, suggesting a role of DPSCs in ECM remodeling. Our data seem to suggest a crosstalk between cultured fibroblasts and DPSCs, which seems to modulate genes involved in inflammasome activation, ECM deposition, wound healing, and fibrosis.
2024
Zanini, G., Bertani, G., Di Tinco, R., Pisciotta, A., Bertoni, L., Selleri, V., et al. (2024). Dental Pulp Stem Cells Modulate Inflammasome Pathway and Collagen Deposition of Dermal Fibroblasts. CELLS, 13(10), 1-9 [10.3390/cells13100836].
Zanini, Giada; Bertani, Giulia; Di Tinco, Rosanna; Pisciotta, Alessandra; Bertoni, Laura; Selleri, Valentina; Generali, Luigi; Marconi, Alessandra; Ma...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/971495
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact