MXenes have gained notable attention in tribology due to their excellent wear resistance based on the formation of beneficial tribofilms. However, studies using MXenes as solid lubricants have mainly focused on multi-layer Ti3C2Tx coatings, while little is known about the tribological performance of MXene composites. Therefore, our study aims at scrutinizing and understanding the tribological behavior of MXenes and MXene composites as solid lubricants under reciprocating sliding conditions. Theoretical predictions regarding the resulting interlayer adhesion and coating-substrate adhesion helped to design the hybrid coatings. Multi-layer Ti3C2Tx, molybdenum disulfide (MoS2) and two hybrid coatings using Ti3C2Tx and MoS2 (random mixture and sandwich-like) were spray-coated onto steel substrates with a coating thickness of about 800 nm. Dry sliding tests using a steel ball as counter-body were carried out at room temperature. The coatings’ morphology and formed tribofilms were holistically characterized by scanning and transmission electron microscopy (SEM, TEM) as well as X-ray photoelectron spectroscopy (XPS). Our results demonstrate that both hybrid coatings notably reduce friction and wear, outperforming their respective pure coatings (Ti3C2Tx and MoS2). This is attributed to synergistic effects between Ti3C2Tx and MoS2, with adhesion forces appearing to be the governing mechanism in enhancing the formation of stable tribofilms. Numerical calculations validate our experimental results, verifying that hybrid coatings exhibit low interlayer friction and high adhesion to ferrous substrates. Consequently, our work reveals the potential of Ti3C2Tx/MoS2 hybrid coatings to further optimize friction and wear.

Boidi, G., Zambrano, D., Schwarz, S., Marquis, E., Varga, M., Ripoll, M.R., et al. (2024). Solid lubrication performance of hybrid Ti3C2Tx/MoS2 coatings. CARBON, 225, 1-13 [10.1016/j.carbon.2024.119067].

Solid lubrication performance of hybrid Ti3C2Tx/MoS2 coatings

Marquis, Edoardo;Righi, Maria Clelia;
2024

Abstract

MXenes have gained notable attention in tribology due to their excellent wear resistance based on the formation of beneficial tribofilms. However, studies using MXenes as solid lubricants have mainly focused on multi-layer Ti3C2Tx coatings, while little is known about the tribological performance of MXene composites. Therefore, our study aims at scrutinizing and understanding the tribological behavior of MXenes and MXene composites as solid lubricants under reciprocating sliding conditions. Theoretical predictions regarding the resulting interlayer adhesion and coating-substrate adhesion helped to design the hybrid coatings. Multi-layer Ti3C2Tx, molybdenum disulfide (MoS2) and two hybrid coatings using Ti3C2Tx and MoS2 (random mixture and sandwich-like) were spray-coated onto steel substrates with a coating thickness of about 800 nm. Dry sliding tests using a steel ball as counter-body were carried out at room temperature. The coatings’ morphology and formed tribofilms were holistically characterized by scanning and transmission electron microscopy (SEM, TEM) as well as X-ray photoelectron spectroscopy (XPS). Our results demonstrate that both hybrid coatings notably reduce friction and wear, outperforming their respective pure coatings (Ti3C2Tx and MoS2). This is attributed to synergistic effects between Ti3C2Tx and MoS2, with adhesion forces appearing to be the governing mechanism in enhancing the formation of stable tribofilms. Numerical calculations validate our experimental results, verifying that hybrid coatings exhibit low interlayer friction and high adhesion to ferrous substrates. Consequently, our work reveals the potential of Ti3C2Tx/MoS2 hybrid coatings to further optimize friction and wear.
2024
Boidi, G., Zambrano, D., Schwarz, S., Marquis, E., Varga, M., Ripoll, M.R., et al. (2024). Solid lubrication performance of hybrid Ti3C2Tx/MoS2 coatings. CARBON, 225, 1-13 [10.1016/j.carbon.2024.119067].
Boidi, Guido; Zambrano, Dario; Schwarz, Sabine; Marquis, Edoardo; Varga, Markus; Ripoll, Manel Rodríguez; Badisch, Ewald; Righi, Maria Clelia; Gachot,...espandi
File in questo prodotto:
File Dimensione Formato  
revised manuscript-final.pdf

Open Access dal 29/09/2024

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 2.65 MB
Formato Adobe PDF
2.65 MB Adobe PDF Visualizza/Apri
1-s2.0-S0008622324002860-mmc1.docx

Open Access dal 29/09/2024

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 17.83 MB
Formato Microsoft Word XML
17.83 MB Microsoft Word XML Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/970163
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 19
social impact