We extend classical results of Perego and Rapagnetta on moduli spaces of sheaves of type OG10 to moduli spaces of Bridgeland semistable objects on the Kuznetsov component of a cubic fourfold. In particular, we determine the period of this class of varieties and use it to understand when they become birational to moduli spaces of sheaves on a K3 surface.

Giovenzana, F., Giovenzana, L., Onorati, C. (2023). On the period of Li, Pertusi, and Zhao’s symplectic variety. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 76(4), 1432-1453 [10.4153/s0008414x23000470].

On the period of Li, Pertusi, and Zhao’s symplectic variety

Giovenzana, Franco
Co-primo
;
Onorati, Claudio
Co-primo
2023

Abstract

We extend classical results of Perego and Rapagnetta on moduli spaces of sheaves of type OG10 to moduli spaces of Bridgeland semistable objects on the Kuznetsov component of a cubic fourfold. In particular, we determine the period of this class of varieties and use it to understand when they become birational to moduli spaces of sheaves on a K3 surface.
2023
Giovenzana, F., Giovenzana, L., Onorati, C. (2023). On the period of Li, Pertusi, and Zhao’s symplectic variety. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 76(4), 1432-1453 [10.4153/s0008414x23000470].
Giovenzana, Franco; Giovenzana, Luca; Onorati, Claudio
File in questo prodotto:
File Dimensione Formato  
2202.13702v2.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 490.65 kB
Formato Adobe PDF
490.65 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/969852
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact