We extend classical results of Perego and Rapagnetta on moduli spaces of sheaves of type OG10 to moduli spaces of Bridgeland semistable objects on the Kuznetsov component of a cubic fourfold. In particular, we determine the period of this class of varieties and use it to understand when they become birational to moduli spaces of sheaves on a K3 surface.
Giovenzana, F., Giovenzana, L., Onorati, C. (2023). On the period of Li, Pertusi, and Zhao’s symplectic variety. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 76(4), 1432-1453 [10.4153/s0008414x23000470].
On the period of Li, Pertusi, and Zhao’s symplectic variety
Giovenzana, FrancoCo-primo
;Onorati, Claudio
Co-primo
2023
Abstract
We extend classical results of Perego and Rapagnetta on moduli spaces of sheaves of type OG10 to moduli spaces of Bridgeland semistable objects on the Kuznetsov component of a cubic fourfold. In particular, we determine the period of this class of varieties and use it to understand when they become birational to moduli spaces of sheaves on a K3 surface.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
2202.13702v2.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
490.65 kB
Formato
Adobe PDF
|
490.65 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.