We prove that any symplectic automorphism of finite order on a manifold of type OG 6 acts trivially on the Beauville–Bogomolov–Fujiki lattice and that any birational transformation of finite order acts trivially on its discriminant group. Moreover, we classify all possible invariant and coinvariant sublattices.
Annalisa Grossi, C.O. (2023). Symplectic birational transformations of finite order on O'Grady's sixfolds. KYOTO JOURNAL OF MATHEMATICS, 63(3), 615-639 [10.1215/21562261-10577928].
Symplectic birational transformations of finite order on O'Grady's sixfolds
Annalisa GrossiCo-primo
;Claudio OnoratiCo-primo
;Davide Cesare VenianiCo-primo
2023
Abstract
We prove that any symplectic automorphism of finite order on a manifold of type OG 6 acts trivially on the Beauville–Bogomolov–Fujiki lattice and that any birational transformation of finite order acts trivially on its discriminant group. Moreover, we classify all possible invariant and coinvariant sublattices.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
OG6_Grossi_Onorati_Veniani.pdf
accesso riservato
Tipo:
Postprint
Licenza:
Licenza per accesso riservato
Dimensione
250.61 kB
Formato
Adobe PDF
|
250.61 kB | Adobe PDF | Visualizza/Apri Contatta l'autore |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.