We prove that any symplectic automorphism of finite order on a manifold of type OG 6 acts trivially on the Beauville–Bogomolov–Fujiki lattice and that any birational transformation of finite order acts trivially on its discriminant group. Moreover, we classify all possible invariant and coinvariant sublattices.

Annalisa Grossi, C.O. (2023). Symplectic birational transformations of finite order on O'Grady's sixfolds. KYOTO JOURNAL OF MATHEMATICS, 63(3), 615-639 [10.1215/21562261-10577928].

Symplectic birational transformations of finite order on O'Grady's sixfolds

Annalisa Grossi
Co-primo
;
Claudio Onorati
Co-primo
;
Davide Cesare Veniani
Co-primo
2023

Abstract

We prove that any symplectic automorphism of finite order on a manifold of type OG 6 acts trivially on the Beauville–Bogomolov–Fujiki lattice and that any birational transformation of finite order acts trivially on its discriminant group. Moreover, we classify all possible invariant and coinvariant sublattices.
2023
Annalisa Grossi, C.O. (2023). Symplectic birational transformations of finite order on O'Grady's sixfolds. KYOTO JOURNAL OF MATHEMATICS, 63(3), 615-639 [10.1215/21562261-10577928].
Annalisa Grossi, Claudio Onorati, Davide Cesare Veniani
File in questo prodotto:
File Dimensione Formato  
OG6_Grossi_Onorati_Veniani.pdf

accesso riservato

Tipo: Postprint
Licenza: Licenza per accesso riservato
Dimensione 250.61 kB
Formato Adobe PDF
250.61 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/969851
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 4
social impact