Federated Learning (FL) represents the de facto approach for distributed training of machine learning models. Nevertheless, researchers have identified several security and privacy FL issues. Among these, the lack of anonymity exposes FL to linkability attacks, representing a risk for model alteration and worker impersonation, where adversaries can explicitly select the attack target, knowing its identity. Named-Data Networking (NDN) is a novel networking paradigm that decouples the data from its location, anonymising the users. NDN embodies a suitable solution to ensure workers' privacy in FL, thus fixing the abovementioned issues. However, several issues must be addressed to fit FL logic in NDN semantics, such as missing push-based communication in NDN and anonymous NDN naming convention. To this end, this paper contributes a novel anonymous-by-design FL framework with a customised communication protocol leveraging NDN. The proposed communication scheme encompasses an ad-hoc FL-oriented naming convention and anonymity-driven forwarding and enrollment procedures. The anonymity and privacy requirements considered during the framework definition are fully satisfied through a detailed analysis of the framework's robustness. Moreover, we compare the proposed mechanism and state-of-the-art anonymity solutions, focusing on the communication efficiency perspective. The simulation results show latency and training time improvements up to similar to 30%, especially when dealing with large models, numerous federations, and complex networks.

Agiollo A., Bardhi E., Conti M., Dal Fabbro N., Lazzeretti R. (2024). Anonymous Federated Learning via Named-Data Networking. FUTURE GENERATION COMPUTER SYSTEMS, 152, 288-303 [10.1016/j.future.2023.11.009].

Anonymous Federated Learning via Named-Data Networking

Agiollo A.
Co-primo
;
2024

Abstract

Federated Learning (FL) represents the de facto approach for distributed training of machine learning models. Nevertheless, researchers have identified several security and privacy FL issues. Among these, the lack of anonymity exposes FL to linkability attacks, representing a risk for model alteration and worker impersonation, where adversaries can explicitly select the attack target, knowing its identity. Named-Data Networking (NDN) is a novel networking paradigm that decouples the data from its location, anonymising the users. NDN embodies a suitable solution to ensure workers' privacy in FL, thus fixing the abovementioned issues. However, several issues must be addressed to fit FL logic in NDN semantics, such as missing push-based communication in NDN and anonymous NDN naming convention. To this end, this paper contributes a novel anonymous-by-design FL framework with a customised communication protocol leveraging NDN. The proposed communication scheme encompasses an ad-hoc FL-oriented naming convention and anonymity-driven forwarding and enrollment procedures. The anonymity and privacy requirements considered during the framework definition are fully satisfied through a detailed analysis of the framework's robustness. Moreover, we compare the proposed mechanism and state-of-the-art anonymity solutions, focusing on the communication efficiency perspective. The simulation results show latency and training time improvements up to similar to 30%, especially when dealing with large models, numerous federations, and complex networks.
2024
Agiollo A., Bardhi E., Conti M., Dal Fabbro N., Lazzeretti R. (2024). Anonymous Federated Learning via Named-Data Networking. FUTURE GENERATION COMPUTER SYSTEMS, 152, 288-303 [10.1016/j.future.2023.11.009].
Agiollo A.; Bardhi E.; Conti M.; Dal Fabbro N.; Lazzeretti R.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/969349
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact