We investigate the implementation of a controlled-Z gate on a pair of Rydberg atoms in spatially separated dipole traps where the joint excitation of both atoms into the Rydberg level is strongly suppressed (the Rydberg blockade). We follow the adiabatic gate scheme of Jaksch et al. [D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000)PRLTAO0031-900710.1103/PhysRevLett.85.2208], where the pair of atoms is coherently excited using lasers, and apply it to the experimental setup outlined by Gaëtan et al. [A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Nat. Phys. 5, 115 (2009)NPAHAX1745-247310.1038/nphys1183]. We apply optimization to the experimental parameters to improve gate fidelity and consider the impact of several experimental constraints on the gate success. © 2014 American Physical Society.
Muller M.M., Murphy M., Montangero S., Calarco T., Grangier P., Browaeys A. (2014). Implementation of an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms. PHYSICAL REVIEW A, 89(3), 1-8 [10.1103/PhysRevA.89.032334].
Implementation of an experimentally feasible controlled-phase gate on two blockaded Rydberg atoms
Murphy M.;Calarco T.;
2014
Abstract
We investigate the implementation of a controlled-Z gate on a pair of Rydberg atoms in spatially separated dipole traps where the joint excitation of both atoms into the Rydberg level is strongly suppressed (the Rydberg blockade). We follow the adiabatic gate scheme of Jaksch et al. [D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000)PRLTAO0031-900710.1103/PhysRevLett.85.2208], where the pair of atoms is coherently excited using lasers, and apply it to the experimental setup outlined by Gaëtan et al. [A. Gaëtan, Y. Miroshnychenko, T. Wilk, A. Chotia, M. Viteau, D. Comparat, P. Pillet, A. Browaeys, and P. Grangier, Nat. Phys. 5, 115 (2009)NPAHAX1745-247310.1038/nphys1183]. We apply optimization to the experimental parameters to improve gate fidelity and consider the impact of several experimental constraints on the gate success. © 2014 American Physical Society.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.