BACKGROUND: Myocardial cells from failing human hearts are characterized by abnormal calcium handling, a negative force-frequency relationship, and decreased sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) activity. In this study, we tested whether contractile function can be improved by decreasing the inhibitory effects of phospholamban on SERCA2a with adenoviral gene transfer of antisense phospholamban (asPL). METHODS AND RESULTS: Myocardial cells isolated from 9 patients with end-stage heart failure and 18 donor nonfailing hearts were infected with adenoviruses encoding for either the antisense of phospholamban (Ad.asPL), the SERCA2a gene (Ad.SERCA2a), or the reporter genes beta-galactosidase and green fluorescent protein (Ad.betagal-GFP). Adenoviral gene transfer with Ad.asPL decreased phospholamban expression over 48 hours, increasing the velocity of both contraction and relaxation. Compared with cardiomyocytes infected with Ad.asPL (n=13), human myocytes infected with Ad.betagal-GFP (n=8) had enhanced contraction velocity (20.3 +/- 3.9% versus 8.7 +/- 2.6% shortening/second; P<0.01) and relaxation velocity (26.0 +/- 6.2% versus 8.6 +/- 4.3% shortening/second; P<0.01). The improvement in contraction and relaxation velocities was comparable to cardiomyocytes infected with Ad.SERCA2a. Failing human cardiomyocytes had decreased contraction and Ca2+ release with increasing frequency (0.1 to 2 Hz). Phospholamban ablation restored the frequency response in the failing cardiomyocytes to normal; increasing frequency resulted in enhanced sarcoplasmic reticulum Ca2+ release and contraction. CONCLUSION: These results show that gene transfer of asPL can improve the contractile function in failing human myocardium. Targeting phospholamban may provide therapeutic benefits in human heart failure.

del Monte F, Harding SE, Dec GW, Gwathmey JK, Hajjar RJ (2002). Targeting phospholamban by gene transfer in human heart failure. CIRCULATION, 105(8), 904-907.

Targeting phospholamban by gene transfer in human heart failure

del Monte F
Primo
;
2002

Abstract

BACKGROUND: Myocardial cells from failing human hearts are characterized by abnormal calcium handling, a negative force-frequency relationship, and decreased sarcoplasmic reticulum Ca2+ ATPase (SERCA2a) activity. In this study, we tested whether contractile function can be improved by decreasing the inhibitory effects of phospholamban on SERCA2a with adenoviral gene transfer of antisense phospholamban (asPL). METHODS AND RESULTS: Myocardial cells isolated from 9 patients with end-stage heart failure and 18 donor nonfailing hearts were infected with adenoviruses encoding for either the antisense of phospholamban (Ad.asPL), the SERCA2a gene (Ad.SERCA2a), or the reporter genes beta-galactosidase and green fluorescent protein (Ad.betagal-GFP). Adenoviral gene transfer with Ad.asPL decreased phospholamban expression over 48 hours, increasing the velocity of both contraction and relaxation. Compared with cardiomyocytes infected with Ad.asPL (n=13), human myocytes infected with Ad.betagal-GFP (n=8) had enhanced contraction velocity (20.3 +/- 3.9% versus 8.7 +/- 2.6% shortening/second; P<0.01) and relaxation velocity (26.0 +/- 6.2% versus 8.6 +/- 4.3% shortening/second; P<0.01). The improvement in contraction and relaxation velocities was comparable to cardiomyocytes infected with Ad.SERCA2a. Failing human cardiomyocytes had decreased contraction and Ca2+ release with increasing frequency (0.1 to 2 Hz). Phospholamban ablation restored the frequency response in the failing cardiomyocytes to normal; increasing frequency resulted in enhanced sarcoplasmic reticulum Ca2+ release and contraction. CONCLUSION: These results show that gene transfer of asPL can improve the contractile function in failing human myocardium. Targeting phospholamban may provide therapeutic benefits in human heart failure.
2002
del Monte F, Harding SE, Dec GW, Gwathmey JK, Hajjar RJ (2002). Targeting phospholamban by gene transfer in human heart failure. CIRCULATION, 105(8), 904-907.
del Monte F; Harding SE; Dec GW; Gwathmey JK; Hajjar RJ
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/969118
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 74
  • Scopus 254
  • ???jsp.display-item.citation.isi??? 190
social impact