This paper focuses on the construction of a general parametric model that can be implemented executing multiple swap tests over few qubits and applying a suitable measurement protocol. The model turns out to be equivalent to a two-layer feedforward neural network which can be realized combining small quantum modules. The advantages and the perspectives of the proposed quantum method are discussed.

Pastorello, D., Blanzieri, E. (2024). Scalable quantum neural networks by few quantum resources. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 22(7), 1-16 [10.1142/s0219749924500187].

Scalable quantum neural networks by few quantum resources

Pastorello, Davide;
2024

Abstract

This paper focuses on the construction of a general parametric model that can be implemented executing multiple swap tests over few qubits and applying a suitable measurement protocol. The model turns out to be equivalent to a two-layer feedforward neural network which can be realized combining small quantum modules. The advantages and the perspectives of the proposed quantum method are discussed.
2024
Pastorello, D., Blanzieri, E. (2024). Scalable quantum neural networks by few quantum resources. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 22(7), 1-16 [10.1142/s0219749924500187].
Pastorello, Davide; Blanzieri, Enrico
File in questo prodotto:
File Dimensione Formato  
Pastorello_Blanzieri.pdf

embargo fino al 17/03/2025

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 490.86 kB
Formato Adobe PDF
490.86 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/968449
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact