Preterm birth (PTB) identifies infants prematurely born <37 weeks/gestation and is one of the main causes of infant mortality. PTB has been linked to air pollution exposure, but its timing is still unclear and neglects the acute nature of delivery and its association with short-term effects. We analyzed 3 years of birth data (2015–2017) in Turin (Italy) and the relationships with proinflammatory chemicals (PM2.5, O3, and NO2) and biological (aeroallergens) pollutants on PTB vs. at-term birth, in the narrow window of a week before delivery. A tailored non-stationary Poisson model correcting for seasonality and possible confounding variables was applied. Relative risk associated with each pollutant was assessed at any time lag between 0 and 7 days prior to delivery. PTB risk was significantly associated with increased levels of both chemical (PM2.5, RR = 1.023 (1.003–1.043), O3, 1.025 (1.001–1.048)) and biological (aeroallergens, RR ~ 1.01 (1.0002–1.016)) pollutants in the week prior to delivery. None of these, except for NO2 (RR = 1.01 (1.002–1.021)), appeared to play any role on at-term delivery. Pollutant-induced acute inflammation eliciting delivery in at-risk pregnancies may represent the pathophysiological link between air pollution and PTB, as testified by the different effects played on PTB revealed. Further studies are needed to better elucidate a possible exposure threshold to prevent PTB.
Cocchi E., Bellisario V., Cresi F., Plazzotta C., Cassardo C., Siniscalco C., et al. (2023). Air Pollution and Aeroallergens as Possible Triggers in Preterm Birth Delivery. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 20(2), 1-15 [10.3390/ijerph20021610].
Air Pollution and Aeroallergens as Possible Triggers in Preterm Birth Delivery
Cocchi E.Primo
;Siniscalco C.;
2023
Abstract
Preterm birth (PTB) identifies infants prematurely born <37 weeks/gestation and is one of the main causes of infant mortality. PTB has been linked to air pollution exposure, but its timing is still unclear and neglects the acute nature of delivery and its association with short-term effects. We analyzed 3 years of birth data (2015–2017) in Turin (Italy) and the relationships with proinflammatory chemicals (PM2.5, O3, and NO2) and biological (aeroallergens) pollutants on PTB vs. at-term birth, in the narrow window of a week before delivery. A tailored non-stationary Poisson model correcting for seasonality and possible confounding variables was applied. Relative risk associated with each pollutant was assessed at any time lag between 0 and 7 days prior to delivery. PTB risk was significantly associated with increased levels of both chemical (PM2.5, RR = 1.023 (1.003–1.043), O3, 1.025 (1.001–1.048)) and biological (aeroallergens, RR ~ 1.01 (1.0002–1.016)) pollutants in the week prior to delivery. None of these, except for NO2 (RR = 1.01 (1.002–1.021)), appeared to play any role on at-term delivery. Pollutant-induced acute inflammation eliciting delivery in at-risk pregnancies may represent the pathophysiological link between air pollution and PTB, as testified by the different effects played on PTB revealed. Further studies are needed to better elucidate a possible exposure threshold to prevent PTB.File | Dimensione | Formato | |
---|---|---|---|
ijerph-20-01610.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
2.75 MB
Formato
Adobe PDF
|
2.75 MB | Adobe PDF | Visualizza/Apri |
ijerph-20-01610-s001.zip
accesso aperto
Tipo:
File Supplementare
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
168.26 kB
Formato
Zip File
|
168.26 kB | Zip File | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.