Objectives To develop a prediction model to guide annual assessment of systemic sclerosis (SSc) patients tailored in accordance to disease activity. Methods A machine learning approach was used to develop a model that can identify patients without disease progression. SSc patients included in the prospective Leiden SSc cohort and fulfilling the ACR/EULAR 2013 criteria were included. Disease progression was defined as progression in >= 1 organ system, and/or start of immunosuppression or death. Using elastic-net-regularisation, and including 90 independent clinical variables (100% complete), we trained the model on 75% and validated it on 25% of the patients, optimising on negative predictive value (NPV) to minimise the likelihood of missing progression. Probability cutoffs were identified for low and high risk for disease progression by expert assessment. Results Of the 492 SSc patients (follow-up range: 2-10 years), disease progression during follow-up was observed in 52% (median time 4.9 years). Performance of the model in the test set showed an AUC-ROC of 0.66. Probability score cutoffs were defined: low risk for disease progression (<0.197, NPV:1.0; 29% of patients), intermediate risk (0.197-0.223, NPV:0.82; 27%) and high risk (>0.223, NPV:0.78; 44%). The relevant variables for the model were: previous use of cyclophosphamide or corticosteroids, start with immunosuppressive drugs, previous gastrointestinal progression, previous cardiovascular event, pulmonary arterial hypertension, modified Rodnan Skin Score, creatine kinase and diffusing capacity for carbon monoxide. Conclusion Our machine-learning-assisted model for progression enabled us to classify 29% of SSc patients as 'low risk'. In this group, annual assessment programmes could be less extensive than indicated by international guidelines.

van Leeuwen, N.M., Maurits, M., Liem, S., Ciaffi, J., Ajmone Marsan, N., Ninaber, M., et al. (2021). New risk model is able to identify patients with a low risk of progression in systemic sclerosis. RMD OPEN, 7(2), 1-9 [10.1136/rmdopen-2020-001524].

New risk model is able to identify patients with a low risk of progression in systemic sclerosis

Ciaffi, Jacopo;
2021

Abstract

Objectives To develop a prediction model to guide annual assessment of systemic sclerosis (SSc) patients tailored in accordance to disease activity. Methods A machine learning approach was used to develop a model that can identify patients without disease progression. SSc patients included in the prospective Leiden SSc cohort and fulfilling the ACR/EULAR 2013 criteria were included. Disease progression was defined as progression in >= 1 organ system, and/or start of immunosuppression or death. Using elastic-net-regularisation, and including 90 independent clinical variables (100% complete), we trained the model on 75% and validated it on 25% of the patients, optimising on negative predictive value (NPV) to minimise the likelihood of missing progression. Probability cutoffs were identified for low and high risk for disease progression by expert assessment. Results Of the 492 SSc patients (follow-up range: 2-10 years), disease progression during follow-up was observed in 52% (median time 4.9 years). Performance of the model in the test set showed an AUC-ROC of 0.66. Probability score cutoffs were defined: low risk for disease progression (<0.197, NPV:1.0; 29% of patients), intermediate risk (0.197-0.223, NPV:0.82; 27%) and high risk (>0.223, NPV:0.78; 44%). The relevant variables for the model were: previous use of cyclophosphamide or corticosteroids, start with immunosuppressive drugs, previous gastrointestinal progression, previous cardiovascular event, pulmonary arterial hypertension, modified Rodnan Skin Score, creatine kinase and diffusing capacity for carbon monoxide. Conclusion Our machine-learning-assisted model for progression enabled us to classify 29% of SSc patients as 'low risk'. In this group, annual assessment programmes could be less extensive than indicated by international guidelines.
2021
van Leeuwen, N.M., Maurits, M., Liem, S., Ciaffi, J., Ajmone Marsan, N., Ninaber, M., et al. (2021). New risk model is able to identify patients with a low risk of progression in systemic sclerosis. RMD OPEN, 7(2), 1-9 [10.1136/rmdopen-2020-001524].
van Leeuwen, Nina Marijn; Maurits, Marc; Liem, Sophie; Ciaffi, Jacopo; Ajmone Marsan, Nina; Ninaber, Maarten; Allaart, Cornelia; Gillet van Dongen, He...espandi
File in questo prodotto:
File Dimensione Formato  
rmdopen-2020-001524.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 814.92 kB
Formato Adobe PDF
814.92 kB Adobe PDF Visualizza/Apri
rmdopen-2020-001524supp001.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 2.17 MB
Formato Adobe PDF
2.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/968115
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact