The vegetation indices (VIs) derived from the hyperspectral reflectance of vegetation are presented in this study for monitoring live green vegetation in the northern ecosystems of Iceland, along the fjords of Eyjafjörður and the Skagafjörður. The comparative analysis of the following VIs was performed: the NDVI, RVI, NRVI, TVI, CTVI, TTVI and SAVI. The methodology is based on the raster calculator band in a QGIS. The dataset includes a Landsat TM scene of 2013, UTM Zone 53, WGS84 captured from the GloVis. The computed bands include the NIR and R spectral bands and their combinations according to the algorithms of each of the seven VIs. The hyperspectral reflectance and crop canopy computations were applied to generate various scales of VIs and demonstrated following data range: NDVI: -0.91 to 0.65, RVI: 0.22 to 19.65, NRVI: 0.63 to 0.90, TVI: 0 to 1.12, CTVI: -0.64 to 1.07, TTVI: 0.70 to 1.18 and SAVI: -1.36 to 0.99 (roughly to 1.00). Of these, the RVI, NRVI, TVI and TTVI are adjusted to the positive values while the NDVI, CTVI and SAVI do include the negative diapason in the dataset due to the computing algorithm. The algorithms of the seven VIs are described and visualized in form of maps based on the multispectral remote sensing Landsat TM imagery identifying vegetated areas, their health condition and distribution of green areas against the bare soils, rocks, ocean water, lakes and ice-covered glaciers. The paper contributes both to the technical presentation of the QGIS functionality for the Landsat TM data processing by a raster calculator, and to the regional geographic studies of Iceland and Arctic ecosystems.

Lemenkova, P. (2020). Hyperspectral Vegetation Indices Calculated by Qgis Using Landsat Tm Image: a Case Study of Northern Iceland. ADVANCED RESEARCH IN LIFE SCIENCES, 4(1), 70-78 [10.2478/arls-2020-0021].

Hyperspectral Vegetation Indices Calculated by Qgis Using Landsat Tm Image: a Case Study of Northern Iceland

Lemenkova, Polina
Primo
2020

Abstract

The vegetation indices (VIs) derived from the hyperspectral reflectance of vegetation are presented in this study for monitoring live green vegetation in the northern ecosystems of Iceland, along the fjords of Eyjafjörður and the Skagafjörður. The comparative analysis of the following VIs was performed: the NDVI, RVI, NRVI, TVI, CTVI, TTVI and SAVI. The methodology is based on the raster calculator band in a QGIS. The dataset includes a Landsat TM scene of 2013, UTM Zone 53, WGS84 captured from the GloVis. The computed bands include the NIR and R spectral bands and their combinations according to the algorithms of each of the seven VIs. The hyperspectral reflectance and crop canopy computations were applied to generate various scales of VIs and demonstrated following data range: NDVI: -0.91 to 0.65, RVI: 0.22 to 19.65, NRVI: 0.63 to 0.90, TVI: 0 to 1.12, CTVI: -0.64 to 1.07, TTVI: 0.70 to 1.18 and SAVI: -1.36 to 0.99 (roughly to 1.00). Of these, the RVI, NRVI, TVI and TTVI are adjusted to the positive values while the NDVI, CTVI and SAVI do include the negative diapason in the dataset due to the computing algorithm. The algorithms of the seven VIs are described and visualized in form of maps based on the multispectral remote sensing Landsat TM imagery identifying vegetated areas, their health condition and distribution of green areas against the bare soils, rocks, ocean water, lakes and ice-covered glaciers. The paper contributes both to the technical presentation of the QGIS functionality for the Landsat TM data processing by a raster calculator, and to the regional geographic studies of Iceland and Arctic ecosystems.
2020
Lemenkova, P. (2020). Hyperspectral Vegetation Indices Calculated by Qgis Using Landsat Tm Image: a Case Study of Northern Iceland. ADVANCED RESEARCH IN LIFE SCIENCES, 4(1), 70-78 [10.2478/arls-2020-0021].
Lemenkova, Polina
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/967931
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact