It is well known that microarray printing, hybridization, and washing oftentimes create erroneous measurements, and these errors detrimentally impact machine microarray spot quality classification. Thus, it is crucial to identify and remove these errors if automation is to replace the still common practice of visually assessing spot quality, an extremely expensive and time-consuming procedure. A major problem in microarray spot quality classification methods proposed in the literature is the correlation among the features extracted from the spots. In this paper, we propose using a random subspace ensemble of neural networks and a feature selection algorithm to improve the performance of our microarray spot quality classification method. Our best method obtains an error under the receiver operating characteristic curve (EAUR) of 0.3 outperforming the stand-alone support vector machine EAUR of 1.7. The consistency of our proposed approach makes it a viable alternative to the labour-intensive manual method of spot quality assessment.

L. Nanni, A. Lumini, S. Brahnam (2010). Advanced Machine Learning Techniques for microarray spot quality classification. NEURAL COMPUTING & APPLICATIONS, 19, 471-475 [10.1007/s00521-010-0342-3].

Advanced Machine Learning Techniques for microarray spot quality classification

NANNI, LORIS;LUMINI, ALESSANDRA;
2010

Abstract

It is well known that microarray printing, hybridization, and washing oftentimes create erroneous measurements, and these errors detrimentally impact machine microarray spot quality classification. Thus, it is crucial to identify and remove these errors if automation is to replace the still common practice of visually assessing spot quality, an extremely expensive and time-consuming procedure. A major problem in microarray spot quality classification methods proposed in the literature is the correlation among the features extracted from the spots. In this paper, we propose using a random subspace ensemble of neural networks and a feature selection algorithm to improve the performance of our microarray spot quality classification method. Our best method obtains an error under the receiver operating characteristic curve (EAUR) of 0.3 outperforming the stand-alone support vector machine EAUR of 1.7. The consistency of our proposed approach makes it a viable alternative to the labour-intensive manual method of spot quality assessment.
2010
L. Nanni, A. Lumini, S. Brahnam (2010). Advanced Machine Learning Techniques for microarray spot quality classification. NEURAL COMPUTING & APPLICATIONS, 19, 471-475 [10.1007/s00521-010-0342-3].
L. Nanni; A. Lumini; S. Brahnam
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/96765
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact