In the min-Knapsack problem, one is given a set of items, each having a certain cost and weight. The objective is to select a subset with minimum cost, such that the sum of the weights is not smaller than a given constant. In this paper, we introduce an extension of the min-Knapsack problem with additional “compactness constraints” (mKPC), stating that selected items cannot lie too far apart. This extension has applications in statistics, including in algorithms for change-point detection in time series. We propose three solution methods for the mKPC. The first two methods use the same Mixed-Integer Programming (MIP) formulation but with two different approaches: passing the complete model with a quadratic number of constraints to a black-box MIP solver or dynamically separating the constraints using a branch-and-cut algorithm. Numerical experiments highlight the advantages of this dynamic separation. The third approach is a dynamic programming labelling algorithm. Finally, we focus on the particular case of the unit-cost mKPC (1c-mKPC), which has a specific interpretation in the context of the statistical applications mentioned above. We prove that the 1c-mKPC is solvable in polynomial time with a different ad-hoc dynamic programming algorithm. Experimental results show that this algorithm vastly outperforms both generic approaches for the mKPC and a simple greedy heuristic from the literature.

Santini, A., Malaguti, E. (2024). The min-Knapsack problem with compactness constraints and applications in statistics. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 312(1), 385-397 [10.1016/j.ejor.2023.07.020].

The min-Knapsack problem with compactness constraints and applications in statistics

Malaguti, Enrico
2024

Abstract

In the min-Knapsack problem, one is given a set of items, each having a certain cost and weight. The objective is to select a subset with minimum cost, such that the sum of the weights is not smaller than a given constant. In this paper, we introduce an extension of the min-Knapsack problem with additional “compactness constraints” (mKPC), stating that selected items cannot lie too far apart. This extension has applications in statistics, including in algorithms for change-point detection in time series. We propose three solution methods for the mKPC. The first two methods use the same Mixed-Integer Programming (MIP) formulation but with two different approaches: passing the complete model with a quadratic number of constraints to a black-box MIP solver or dynamically separating the constraints using a branch-and-cut algorithm. Numerical experiments highlight the advantages of this dynamic separation. The third approach is a dynamic programming labelling algorithm. Finally, we focus on the particular case of the unit-cost mKPC (1c-mKPC), which has a specific interpretation in the context of the statistical applications mentioned above. We prove that the 1c-mKPC is solvable in polynomial time with a different ad-hoc dynamic programming algorithm. Experimental results show that this algorithm vastly outperforms both generic approaches for the mKPC and a simple greedy heuristic from the literature.
2024
Santini, A., Malaguti, E. (2024). The min-Knapsack problem with compactness constraints and applications in statistics. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 312(1), 385-397 [10.1016/j.ejor.2023.07.020].
Santini, Alberto; Malaguti, Enrico
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0377221723005593-main.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/967606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact