The relativistic Hartree-Bogoliubov (RHB) model is extended to include density-dependent meson-nucleon couplings. The effective Lagrangian is characterized by a phenomenological density dependence of the σ, ω, and ρ meson-nucleon vertex functions, adjusted to properties of nuclear matter and finite nuclei. Pairing correlations are described by the pairing part of the finite range Gogny interaction. The new density-dependent effective interaction DD-ME1 is tested in the analysis of the equations of state for symmetric and asymmetric nuclear matter, and of ground-state properties of the Sn and Pb isotopic chains. Results of self-consistent RHB calculations are compared with experimental data, and with results previously obtained in the RHB model with nonlinear self-interactions, as well as in the density-dependent relativistic hadron field (DDRH) model. Parity-violating elastic electron scattering on Pb and Sn nuclei is calculated using a relativistic optical model with inclusion of Coulomb distortion effects, and the resulting asymmetry parameters are related to the neutron round-state density distributions.
Niksic T., Vretenar D., Finelli P., Ring P. (2002). Relativistic Hartree-Bogoliubov model with density-dependent meson-nucleon couplings. PHYSICAL REVIEW. C, NUCLEAR PHYSICS, 66(2), 1-15 [10.1103/PhysRevC.66.024306].
Relativistic Hartree-Bogoliubov model with density-dependent meson-nucleon couplings
Finelli P.;
2002
Abstract
The relativistic Hartree-Bogoliubov (RHB) model is extended to include density-dependent meson-nucleon couplings. The effective Lagrangian is characterized by a phenomenological density dependence of the σ, ω, and ρ meson-nucleon vertex functions, adjusted to properties of nuclear matter and finite nuclei. Pairing correlations are described by the pairing part of the finite range Gogny interaction. The new density-dependent effective interaction DD-ME1 is tested in the analysis of the equations of state for symmetric and asymmetric nuclear matter, and of ground-state properties of the Sn and Pb isotopic chains. Results of self-consistent RHB calculations are compared with experimental data, and with results previously obtained in the RHB model with nonlinear self-interactions, as well as in the density-dependent relativistic hadron field (DDRH) model. Parity-violating elastic electron scattering on Pb and Sn nuclei is calculated using a relativistic optical model with inclusion of Coulomb distortion effects, and the resulting asymmetry parameters are related to the neutron round-state density distributions.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.