We present a novel cold strontium atom source designed for quantum sensors. We optimized the deceleration process to capture a large velocity class of atoms emitted from an oven and achieved a compact and low-power setup capable of generating a high atomic flux. Our approach involves velocity-dependent transverse capture of atoms using a two-dimensional magneto-optical trap. To enhance the atomic flux, we employ tailored magnetic fields that minimize radial beam expansion and incorporate a cascaded Zeeman-slowing configuration utilizing two optical frequencies. The performance is comparable to that of conventional Zeeman slower sources, and the scheme is applicable to other atomic species. Our results represent a significant advancement towards the deployment of portable and, possibly, space-based cold atom sensors.
Feng, C., Robert, P., Bouyer, P., Canuel, B., Li, J., Das, S., et al. (2024). High flux strontium atom source. QUANTUM SCIENCE AND TECHNOLOGY, 9(2), 1-12 [10.1088/2058-9565/ad310b].
High flux strontium atom source
Prevedelli, M;
2024
Abstract
We present a novel cold strontium atom source designed for quantum sensors. We optimized the deceleration process to capture a large velocity class of atoms emitted from an oven and achieved a compact and low-power setup capable of generating a high atomic flux. Our approach involves velocity-dependent transverse capture of atoms using a two-dimensional magneto-optical trap. To enhance the atomic flux, we employ tailored magnetic fields that minimize radial beam expansion and incorporate a cascaded Zeeman-slowing configuration utilizing two optical frequencies. The performance is comparable to that of conventional Zeeman slower sources, and the scheme is applicable to other atomic species. Our results represent a significant advancement towards the deployment of portable and, possibly, space-based cold atom sensors.File | Dimensione | Formato | |
---|---|---|---|
qstsrbeam2024.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
6.51 MB
Formato
Adobe PDF
|
6.51 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.