We study the analytic and Gevrey regularity for a “sum of squares” operator closely connected to the Schrödinger equation with minimal coupling. We however assume that the (magnetic) vector potential has some degree of homogeneity and that the Hörmander bracket condition is satisfied. It is shown that the local analytic/Gevrey regularity of the solution is related to the multiplicities of the zeroes of the Lie bracket of the vector fields.

Bove A., Chinni G. (2024). On a sum of squares operator related to the Schrödinger equation with a magnetic field. ANNALI DI MATEMATICA PURA ED APPLICATA, 203(5), 2037-2055 [10.1007/s10231-024-01434-2].

On a sum of squares operator related to the Schrödinger equation with a magnetic field

Bove A.
;
Chinni G.
2024

Abstract

We study the analytic and Gevrey regularity for a “sum of squares” operator closely connected to the Schrödinger equation with minimal coupling. We however assume that the (magnetic) vector potential has some degree of homogeneity and that the Hörmander bracket condition is satisfied. It is shown that the local analytic/Gevrey regularity of the solution is related to the multiplicities of the zeroes of the Lie bracket of the vector fields.
2024
Bove A., Chinni G. (2024). On a sum of squares operator related to the Schrödinger equation with a magnetic field. ANNALI DI MATEMATICA PURA ED APPLICATA, 203(5), 2037-2055 [10.1007/s10231-024-01434-2].
Bove A.; Chinni G.
File in questo prodotto:
File Dimensione Formato  
On+a+sum+of+squares+related+to+the+Schrodinger+equation+with+a+magnetic+field_A.Bove_G.Chinni.pdf

embargo fino al 06/03/2025

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 379.88 kB
Formato Adobe PDF
379.88 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/966319
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact