We studied the weekly number and the growth/decline rates of COVID-19 deaths of the period from October 31, 2022, to February 9, 2023, in Italy. We found that the COVID-19 winter wave reached its peak during the three holiday weeks from December 16, 2022, to January 5, 2023, and it was definitely trending downward, returning to the same number of deaths as the end of October 2022, in the first week February 2023. During this period of 15 weeks, that wave caused a number of deaths as large as 8,526. Its average growth rate was +7.89% deaths per week (10 weeks), while the average weekly decline rate was -15.85% (5 weeks). At the time of writing of this paper, Italy has been experiencing a new COVID-19 wave, with the latest 7 weekly bulletins (October 26, 2023 – December 13, 2023) showing that deaths have climbed from 148 to 322. The weekly growth rate had risen by +14.08% deaths, on average. Hypothesizing that this 2023/2024 wave will have a total duration similar to that of 2022/2023, with comparable extensions of both the growth period and the decline period and similar growth/decline rates, we predict that the number of COVID-19 deaths of the period from the end of October 2023 to the beginning of February 2024 should be less than 4100. A preliminary assessment of this forecast, based on 11 of the 15 weeks of the period, has already confirmed the accuracy of this approach.

Drawing a parallel between the trend of confirmed COVID-19 deaths in the winters of 2022/2023 and 2023/2024 in Italy, with a prediction / Roccetti M.. - In: MATHEMATICAL BIOSCIENCES AND ENGINEERING. - ISSN 1547-1063. - STAMPA. - 21:3(2024), pp. 3742-3754. [10.3934/mbe.2024165]

Drawing a parallel between the trend of confirmed COVID-19 deaths in the winters of 2022/2023 and 2023/2024 in Italy, with a prediction

Roccetti M.
Primo
2024

Abstract

We studied the weekly number and the growth/decline rates of COVID-19 deaths of the period from October 31, 2022, to February 9, 2023, in Italy. We found that the COVID-19 winter wave reached its peak during the three holiday weeks from December 16, 2022, to January 5, 2023, and it was definitely trending downward, returning to the same number of deaths as the end of October 2022, in the first week February 2023. During this period of 15 weeks, that wave caused a number of deaths as large as 8,526. Its average growth rate was +7.89% deaths per week (10 weeks), while the average weekly decline rate was -15.85% (5 weeks). At the time of writing of this paper, Italy has been experiencing a new COVID-19 wave, with the latest 7 weekly bulletins (October 26, 2023 – December 13, 2023) showing that deaths have climbed from 148 to 322. The weekly growth rate had risen by +14.08% deaths, on average. Hypothesizing that this 2023/2024 wave will have a total duration similar to that of 2022/2023, with comparable extensions of both the growth period and the decline period and similar growth/decline rates, we predict that the number of COVID-19 deaths of the period from the end of October 2023 to the beginning of February 2024 should be less than 4100. A preliminary assessment of this forecast, based on 11 of the 15 weeks of the period, has already confirmed the accuracy of this approach.
2024
Drawing a parallel between the trend of confirmed COVID-19 deaths in the winters of 2022/2023 and 2023/2024 in Italy, with a prediction / Roccetti M.. - In: MATHEMATICAL BIOSCIENCES AND ENGINEERING. - ISSN 1547-1063. - STAMPA. - 21:3(2024), pp. 3742-3754. [10.3934/mbe.2024165]
Roccetti M.
File in questo prodotto:
File Dimensione Formato  
10.3934_mbe.2024165 (5).pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 497.51 kB
Formato Adobe PDF
497.51 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/966301
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact