The synthesis of highly ordered magnetic L10 alloys by means of the so-called pre-ordered precursor reduction (PPR) approach is deeply investigated by in situ X-ray absorption spectroscopy experiments. By following the chemical and structural evolution of the M(H2O)6PtCl6 (M = Fe, Co, Ni) precursor salts during hydrogen-assisted thermal reduction, it was possible to shed light on the key role of the crystalline initial compound whose intrinsic atomic order serves as a driving force to kinetically favor the formation of highly ordered FePt, CoPt and NiPt L10 alloys under milder conditions with respect to ordinary thermal treatments. The results confirm the potentiality of the PPR synthesis approach that can be suitably extended, by properly choosing the precursor salt, for the synthesis of other binary and ternary alloys where the chemical order represents a key property of the material, with a potential strong impact on several technological applications.

Synthesis of highly ordered L1 0 MPt alloys (M= Fe, Co, Ni) from crystalline salts: an in situ study of the pre-ordered precursor reduction strategy / Laureti, S; D’Acapito, F; Imperatori, P; Patrizi, E; Varvaro, G; Puri, A; Cannas, C; Capobianchi, A. - In: JOURNAL OF MATERIALS CHEMISTRY. C. - ISSN 2050-7526. - STAMPA. - 11:47(2023), pp. 16661-16671. [10.1039/d3tc02262e]

Synthesis of highly ordered L1 0 MPt alloys (M= Fe, Co, Ni) from crystalline salts: an in situ study of the pre-ordered precursor reduction strategy

Puri, A;
2023

Abstract

The synthesis of highly ordered magnetic L10 alloys by means of the so-called pre-ordered precursor reduction (PPR) approach is deeply investigated by in situ X-ray absorption spectroscopy experiments. By following the chemical and structural evolution of the M(H2O)6PtCl6 (M = Fe, Co, Ni) precursor salts during hydrogen-assisted thermal reduction, it was possible to shed light on the key role of the crystalline initial compound whose intrinsic atomic order serves as a driving force to kinetically favor the formation of highly ordered FePt, CoPt and NiPt L10 alloys under milder conditions with respect to ordinary thermal treatments. The results confirm the potentiality of the PPR synthesis approach that can be suitably extended, by properly choosing the precursor salt, for the synthesis of other binary and ternary alloys where the chemical order represents a key property of the material, with a potential strong impact on several technological applications.
2023
Synthesis of highly ordered L1 0 MPt alloys (M= Fe, Co, Ni) from crystalline salts: an in situ study of the pre-ordered precursor reduction strategy / Laureti, S; D’Acapito, F; Imperatori, P; Patrizi, E; Varvaro, G; Puri, A; Cannas, C; Capobianchi, A. - In: JOURNAL OF MATERIALS CHEMISTRY. C. - ISSN 2050-7526. - STAMPA. - 11:47(2023), pp. 16661-16671. [10.1039/d3tc02262e]
Laureti, S; D’Acapito, F; Imperatori, P; Patrizi, E; Varvaro, G; Puri, A; Cannas, C; Capobianchi, A
File in questo prodotto:
File Dimensione Formato  
Laureti_J. Mater. Chem. C_2023.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale (CCBYNC)
Dimensione 2.36 MB
Formato Adobe PDF
2.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/965347
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact