Ultracold molecules trapped in optical tweezers show great promise for the implementation of quantum technologies and precision measurements. We study a prototypical scenario where two interacting polar molecules placed in separate traps are controlled using an external electric field. This, for instance, enables a quantum computing scheme in which the rotational structure is used to encode the qubit states. We estimate the typical operation timescales needed for state engineering to be in the range of few microseconds. We further underline the important role of the spatial structure of the two-body states, with the potential for significant gate speedup employing trap-induced resonances.

Sroczynska M., Dawid A., Tomza M., Idziaszek Z., Calarco T., Jachymski K. (2022). Controlling the dynamics of ultracold polar molecules in optical tweezers. NEW JOURNAL OF PHYSICS, 24(1), 1-10 [10.1088/1367-2630/ac434b].

Controlling the dynamics of ultracold polar molecules in optical tweezers

Calarco T.;
2022

Abstract

Ultracold molecules trapped in optical tweezers show great promise for the implementation of quantum technologies and precision measurements. We study a prototypical scenario where two interacting polar molecules placed in separate traps are controlled using an external electric field. This, for instance, enables a quantum computing scheme in which the rotational structure is used to encode the qubit states. We estimate the typical operation timescales needed for state engineering to be in the range of few microseconds. We further underline the important role of the spatial structure of the two-body states, with the potential for significant gate speedup employing trap-induced resonances.
2022
Sroczynska M., Dawid A., Tomza M., Idziaszek Z., Calarco T., Jachymski K. (2022). Controlling the dynamics of ultracold polar molecules in optical tweezers. NEW JOURNAL OF PHYSICS, 24(1), 1-10 [10.1088/1367-2630/ac434b].
Sroczynska M.; Dawid A.; Tomza M.; Idziaszek Z.; Calarco T.; Jachymski K.
File in questo prodotto:
File Dimensione Formato  
SroczyÅ ska_2022_New_J._Phys._24_015001.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 2.08 MB
Formato Adobe PDF
2.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/964874
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact